Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries

被引:148
|
作者
Wang, Xufeng [1 ,3 ]
Feng, Zhijun [1 ]
Hou, Xiaolong [1 ]
Liu, Lingling [2 ]
He, Min [1 ]
He, Xiaoshu [1 ]
Huang, Juntong [1 ]
Wen, Zhenhai [2 ,3 ]
机构
[1] Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Nanchang Hangkong Univ, Key Lab Jiangxi Prov Persistent Pollutants Contro, Nanchang 330063, Jiangxi, Peoples R China
[3] Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fujian Prov Key Lab Nanomat, Fuzhou 350002, Fujian, Peoples R China
关键词
Fluorine doped carbon; LiFePO4; Polyvinylidene fluoride; Cathode material; Lithium-ion batteries; ELECTROCHEMICAL PERFORMANCE; CARBOTHERMAL REDUCTION; GRAPHENE; NITROGEN; COMPOSITE; MICROSPHERES; NANOSPHERES; ELECTRODE; CAPACITY; ANODES;
D O I
10.1016/j.cej.2019.122371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The present work presents an insightful study on the effect of fluorine doped carbon (FC) modification on the electrochemical performance of LiFePO4 cathode material. To this end, polyvinylidene fluoride is used as fluoride source to synthesize FC, which is designed to coat on LiFePO(4)surface with formation of LiFePO4@FC nanocomposites. The microstructure and electrochemical properties of the nanocomposites are systematically examined by various characterization techniques, revealing that FC is tightly attached on surface of LiFePO4 particles forming a three dimensional (3D) conducive network structure. Such favorable structure provides advantages of good grain-to-grain electrical contact, shortening the Li+ diffusion distance between the grain interfaces, and facilitating the rapid transfer of electrons during charge-discharge. The optimal LiFePO4@FC nanocomposites, i.e., with 97.2 wt% of LiFePO4, are verified to show highly desirable electrochemical performance with superior rate capability and excellent cycling performance as the cathode material of lithium-ion batteries.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Direct regeneration of fluorine-doped carbon-coated LiFePO4 cathode materials from spent lithium-ion batteries
    Han, Yurong
    Fang, Yinzhuang
    Yan, Menglong
    Qiu, Haoyu
    Han, Yifeng
    Chen, Yi
    Lin, Liangyou
    Qian, Jingwen
    Mei, Tao
    Wang, Xianbao
    GREEN CHEMISTRY, 2024, 26 (18) : 9791 - 9801
  • [32] Review on Defects and Modification Methods of LiFePO4 Cathode Material for Lithium-Ion Batteries
    Chen, Shi-Peng
    Lv, Dan
    Chen, Jie
    Zhang, Yu-Hang
    Shi, Fa-Nian
    ENERGY & FUELS, 2022, 36 (03) : 1232 - 1251
  • [33] Effect of silver and carbon double coating on the electrochemical performance of LiFePO4 cathode material for lithium ion batteries
    Goktepe, Huseyin
    Sahan, Halil
    Patat, Saban
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (23) : 9774 - 9779
  • [34] Determination of Optimum Carbon Content of LiFePO4 Cathode Material for Lithium Ion Batteries
    Goektepe, Hueseyin
    Sahan, Halil
    Patat, Saban
    ASIAN JOURNAL OF CHEMISTRY, 2009, 21 (04) : 3186 - 3192
  • [35] Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries
    Ren, Yu
    Bruce, Peter G.
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 17 : 60 - 62
  • [36] Effects of vanadium oxide coating on the performance of LiFePO4/C cathode for lithium-ion batteries
    Yong Tao
    Yanbing Cao
    Guorong Hu
    Pengwei Chen
    Zhongdong Peng
    Ke Du
    Ming Jia
    Yong Huang
    Jin Xia
    Luyu Li
    Xiaoming Xie
    Journal of Solid State Electrochemistry, 2019, 23 : 2243 - 2250
  • [37] Mossbauer study on LiFePO4 cathode material for lithium ion batteries
    Hannoyer, B.
    Prince, A. A. M.
    Jean, M.
    Liu, R. S.
    Wang, G. X.
    HYPERFINE INTERACTIONS, 2006, 167 (1-3): : 767 - 772
  • [38] Effects of vanadium oxide coating on the performance of LiFePO4/C cathode for lithium-ion batteries
    Tao, Yong
    Cao, Yanbing
    Hu, Guorong
    Chen, Pengwei
    Pen, Zhongdong
    Du, Ke
    Jia, Ming
    Huang, Yong
    Xia, Jin
    Li, Luyu
    Xie, Xiaoming
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (07) : 2243 - 2250
  • [39] LiFePO4 composites decorated with nitrogen-doped carbon as superior cathode materials for lithium-ion batteries
    Yu Ding
    Pei Pan
    Lihui Chen
    Zhengbing Fu
    Jun Du
    Liangui Guo
    Feng Wang
    Ionics, 2017, 23 : 3295 - 3302
  • [40] A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries
    Su, Chang
    Bu, Xidan
    Xu, Lihuan
    Liu, Junlei
    Zhang, Cheng
    ELECTROCHIMICA ACTA, 2012, 64 : 190 - 195