UNIQUE CONTINUATION PROPERTY FOR THE KP-BBM-II EQUATION

被引:0
|
作者
Mammeri, Youcef [1 ]
机构
[1] Univ Sci & Techol Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove, by using a method introduced by Constantin [6], that if the solution of the Cauchy problem associated with the KP-BBM-II equation has compact support for all times, then this solution vanishes identically. The only restriction is that the support in the y-direction has to be small.
引用
收藏
页码:393 / 399
页数:7
相关论文
共 50 条
  • [31] UNIQUE CONTINUATION ON A HYPERPLANE FOR WAVE EQUATION
    CHENG JIN
    MASAHIRO YAMAMOTO
    ZHOU QI(Department of Mathematics
    Chinese Annals of Mathematics, 1999, (04) : 385 - 392
  • [32] A note on unique continuation for the Schrodinger equation
    Lee, Sanghyuk
    Seo, Ihyeok
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 461 - 468
  • [33] Unique continuation for the magnetic Schrodinger equation
    Laestadius, Andre
    Benedicks, Michael
    Penz, Markus
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (08)
  • [34] Sets of Unique Continuation for Heat Equation
    Nikolai Nadirashvili
    Nadezda Varkentina
    Potential Analysis, 2014, 41 : 1267 - 1272
  • [35] Quantitative Unique Continuation for a Parabolic Equation
    Camliyurt, Guher
    Kukavica, Igor
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (02) : 657 - 678
  • [36] A UNIQUE CONTINUATION THEOREM OF A DIFFUSION EQUATION
    YAMABE, H
    ANNALS OF MATHEMATICS, 1959, 69 (02) : 462 - 466
  • [37] Unique continuation on a hyperplane for wave equation
    Jin, C
    Yamamoto, M
    Qi, Z
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (04) : 385 - 392
  • [38] Unique continuation on a line for the Helmholtz equation
    Lu, Shuai
    Xu, Boxi
    Xu, Xiang
    APPLICABLE ANALYSIS, 2012, 91 (09) : 1761 - 1771
  • [39] Sets of Unique Continuation for Heat Equation
    Nadirashvili, Nikolai
    Varkentina, Nadezda
    POTENTIAL ANALYSIS, 2014, 41 (04) : 1267 - 1272
  • [40] Lie Symmetries and Dynamical Behavior of Soliton Solutions of KP-BBM Equation
    Tanwar, Dig Vijay
    Ray, Atul Kumar
    Chauhan, Anand
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (01)