GPU-accelerated Monte Carlo Based Scatter Correction in Brain PET/MR

被引:0
|
作者
Gaens, Michaela [1 ]
Bert, Julien [3 ]
Pietrzyk, Uwe [1 ,2 ]
Shah, N. Jon [1 ]
Visvikis, Dimitris [3 ]
机构
[1] Forschungszentrum Julich, Inst Neurosci & Med 4, D-52425 Julich, Germany
[2] Univ Wuppertal, Dept Math & Nat Sci, Wuppertal, Germany
[3] CHRU Brest, LaTIM, INSERM, UMR1101, Brest, France
关键词
SIMULATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A main advantage of PET is that it can provide truly quantitative results. In order to achieve this goal an accurate scatter correction is essential. Despite some drawbacks, the currently used single scatter simulation approach is clinically applicable, whereas Monte Carlo (MC) simulations have been shown to provide accurate results, but are still too slow to be used routinely. In this work, the high computing capabilities of graphical processing units (GPUs) are exploited to accelerate PET MC simulations in order to facilitate their use in clinical practice. Starting from voxelized images, the annihilation photons are tracked through to their detection in the simulated PET scanner geometry, while retaining the information on their associated scattering interactions. The scatter distribution provided by the simulation can subsequently be used to correct the measured datasets. The new GPU implementation was validated by comparison with GATE simulation results and found to provide equivalent accuracy. The acceleration factor on the GPU compared to current GATE simulations was 135 for a voxelized brain phantom study. The speedup of MC simulations provided by the graphics processors represents a major step towards a clinically feasible and physically accurate scatter correction.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] A GPU-accelerated Monte Carlo dose computation engine for small animal radiotherapy
    Liu, Zihao
    Zheng, Cheng
    Zhao, Ning
    Huang, Yunwen
    Chen, Jiahao
    Yang, Yidong
    [J]. MEDICAL PHYSICS, 2023, 50 (08) : 5238 - 5247
  • [22] GPU-Accelerated Monte Carlo Code FRED for Clinical Application in Proton Therapy
    Rucinski, A.
    Baran, J.
    Battistoni, G.
    Durante, M.
    Gajewski, J.
    Garbacz, M.
    Kopec, R.
    Krah, N.
    Mierzwinska, G.
    Mojzeszek, N.
    Patera, V.
    Pawlik-Niedzwiecka, M.
    Rinaldi, I.
    Sas-Korczynska, B.
    Scifoni, E.
    Skrzypek, A.
    Tommasino, F.
    Schiavi, A.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E279 - E279
  • [23] GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications
    Franciosini, G.
    Battistoni, G.
    Cerqua, A.
    De Gregorio, A.
    De Maria, P.
    De Simoni, M.
    Dong, Y.
    Fischetti, M.
    Marafini, M.
    Mirabelli, R.
    Muscato, A.
    Patera, V
    Salvati, F.
    Sarti, A.
    Sciubba, A.
    Toppi, M.
    Traini, G.
    Trigilio, A.
    Schiavi, A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (04):
  • [24] GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium
    Mick, Jason
    Hailat, Eyad
    Russo, Vincent
    Rushaidat, Kamel
    Schwiehert, Loren
    Potoff, Jeffrey
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) : 2662 - 2669
  • [25] GPU-Accelerated Monte Carlo Simulation for a Single-Photon Underwater Lidar
    Liao, Yupeng
    Shangguan, Mingjia
    Yang, Zhifeng
    Lin, Zaifa
    Wang, Yuanlun
    Li, Sihui
    [J]. REMOTE SENSING, 2023, 15 (21)
  • [26] Implementation of a Static and Dynamic MLC Model in a GPU-Accelerated Monte Carlo Engine
    Brost, E.
    Tseung, H.
    Antolak, J.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E909 - E909
  • [27] GPU-Accelerated Neural Network Potential Energy Surfaces for Diffusion Monte Carlo
    DiRisio, Ryan J.
    Lu, Fenris
    McCoy, Anne B.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (26): : 5849 - 5859
  • [28] GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium
    Yi, Xi
    Chen, Weiting
    Wu, Linhui
    Ma, Wenjuan
    Zhang, Wei
    Li, Jiao
    Wang, Xin
    Gao, Feng
    [J]. MULTIMODAL BIOMEDICAL IMAGING VII, 2012, 8216
  • [29] GPU-ACCELERATED AND CPU SIMD OPTIMIZED MONTE CARLO SIMULATION OF φ4 MODEL
    Bialas, Piotr
    Kowal, Jakub
    Strzelecki, Adam
    [J]. COMPUTING AND INFORMATICS, 2014, 33 (05) : 1191 - 1208
  • [30] An automatic restoration framework based on GPU-accelerated collateral filtering in brain MR images
    Herng-Hua Chang
    Cheng-Yuan Li
    [J]. BMC Medical Imaging, 19