Photoacoustic Mouse Brain Imaging Using an Optical Fabry-Perot Interferometric Ultrasound Sensor

被引:12
|
作者
Chen, Yuwen [1 ]
Chen, Buhua [1 ]
Yu, Tengfei [2 ]
Yin, Lu [2 ]
Sun, Mingjian [3 ,4 ]
He, Wen [2 ]
Ma, Cheng [1 ,5 ,6 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Dept Ultrasound, Beijing, Peoples R China
[3] Harbin Inst Technol, Sch Informat Sci & Engn, Weihai, Peoples R China
[4] Harbin Inst Technol, Sch Astronaut, Harbin, Peoples R China
[5] Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
[6] Beijing Innovat Ctr Future Chip, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
photoacoustic; mesoscopy; brain imaging; Fabry-Perot interferometer; multiwavelength imaging; MAGNETIC-RESONANCE ANGIOGRAPHY; HIGH-RESOLUTION; TOMOGRAPHY; VASCULATURE; MICROSCOPY;
D O I
10.3389/fnins.2021.672788
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Photoacoustic (PA, or optoacoustic, OA) mesoscopy is a powerful tool for mouse cerebral imaging, which offers high resolution three-dimensional (3D) images with optical absorption contrast inside the optically turbid brain. The image quality of a PA mesoscope relies on the ultrasonic transducer which detects the PA signals. An all-optical ultrasound sensor based on a Fabry-Perot (FP) polymer cavity has the following advantages: broadband frequency response, wide angular coverage and small footprint. Here, we present 3D PA mesoscope for mouse brain imaging using such an optical sensor. A heating laser was used to stabilize the sensor's cavity length during the imaging process. To acquire data for a 3D angiogram of the mouse brain, the sensor was mounted on a translation stage and raster scanned. 3D images of the mouse brain vasculature were reconstructed which showed cerebrovascular structure up to a depth of 8 mm with high quality. Imaging segmentation and dual wavelength imaging were performed to demonstrate the potential of the system in preclinical brain research.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Signal processing algorithm for transmission-type Fabry-Perot interferometric optical fiber sensor
    Kim, SH
    Lee, JJ
    Kwon, DS
    SMART MATERIALS & STRUCTURES, 2001, 10 (04): : 736 - 742
  • [42] A novel photoacoustic spectroscopy system using diphragm based fiber Fabry-Perot sensor
    Wang, Qiaoyun
    Ma, Zhenhe
    He, Zhonghai
    CEIS 2011, 2011, 15
  • [43] Differential confocal fabry-perot for the optical detection of ultrasound
    Blouin, A.
    Padioleau, C.
    Nron, C.
    Uvesque, D.
    Monchalin, J.-P.
    Review of Progress in Quantitative Nondestructive Evaluation, Vols 26A and 26B, 2007, 894 : 193 - 200
  • [44] Optical fiber Fabry-Perot pressure sensor using corrugated diaphragm
    Chen L.
    Zhu J.
    Li Z.
    Wang M.
    Guangxue Xuebao/Acta Optica Sinica, 2016, 36 (03):
  • [45] Photoacoustic endoscopy probe using a coherent fibre-optic bundle and Fabry-Perot ultrasound sensor (Conference Presentation)
    Ansari, Rehman
    Beard, Paul C.
    Zhang, Edward Z.
    Desjardins, Adrien E.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2016, 2016, 9708
  • [46] Dynamics of a noncontacting, white light Fabry-Perot interferometric displacement sensor
    Moro, Erik A.
    Todd, Michael D.
    Puckett, Anthony D.
    APPLIED OPTICS, 2012, 51 (19) : 4394 - 4402
  • [47] A multi-mode extrinsic Fabry-Perot interferometric strain sensor
    Liu, T
    Brooks, D
    Martin, A
    Badcock, R
    Ralph, B
    Fernando, GF
    SMART MATERIALS & STRUCTURES, 1997, 6 (04): : 464 - 469
  • [48] Unambiguous Peak Recognition for a Silicon Fabry-Perot Interferometric Temperature Sensor
    Liu, Guigen
    Hou, Weilin
    Han, Ming
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (10) : 1970 - 1978
  • [49] OPTICAL-FIBER FABRY-PEROT EMBEDDED SENSOR
    LEE, CE
    TAYLOR, HF
    MARKUS, AM
    UDD, E
    OPTICS LETTERS, 1989, 14 (21) : 1225 - 1227
  • [50] A Fabry-Perot optical sensor system-on-chip
    Ahmadi, S
    Zaghloul, M
    CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2001, 26 (3-4): : 159 - 162