IDENTIFICATION OF COUNTERFEIT ALCOHOLIC BEVERAGES USING CLUSTER ANALYSIS IN PRINCIPAL-COMPONENT SPACE

被引:4
|
作者
Khodasevich, M. A. [1 ]
Sinitsyn, G. V. [1 ]
Gres'ko, M. A. [2 ]
Dolya, V. M. [2 ]
Rogovaya, M. V. [1 ]
Kazberuk, A. V. [1 ]
机构
[1] Natl Acad Sci Belarus, BI Stepanov Inst Phys, 68 Nezavisimost Ave, Minsk 220072, BELARUS
[2] BIOSAN Alkos Ltd, Moscow, Russia
关键词
UV-Vis spectroscopy; principal component analysis; cluster analysis; NEAR-INFRARED SPECTROSCOPY; PARTIAL LEAST-SQUARES;
D O I
10.1007/s10812-017-0503-6
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
A study of 153 brands of commercial vodka products showed that counterfeit samples could be identified by introducing a unified additive at the minimum concentration acceptable for instrumental detection and multivariate analysis of UV-Vis transmission spectra. Counterfeit products were detected with 100% probability by using hierarchical cluster analysis or the C-means method in two-dimensional principal-component space.
引用
收藏
页码:517 / 520
页数:4
相关论文
共 50 条
  • [31] L1-Norm Principal-Component Analysis of Complex Data
    Tsagkarakis, Nicholas
    Markopoulos, Panos P.
    Sklivanitis, George
    Pados, Dimitris A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (12) : 3256 - 3267
  • [32] Principal-component analysis for raindrops and its application to the remote sensing of rain
    Meagher, JP
    Haddad, ZS
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2002, 128 (580) : 559 - 571
  • [33] APPLICATION OF PRINCIPAL-COMPONENT ANALYSIS TO THE INTERPRETATION OF BROWN-COAL PROPERTIES
    TESCH, S
    OTTO, M
    FUEL, 1995, 74 (07) : 978 - 982
  • [34] COMPUTER DISPLAY GRAPHICS FOR PRINCIPAL-COMPONENT ANALYSIS AND VEGETATION ORDINATION STUDIES
    KERSHAW, KA
    SHEPARD, RK
    CANADIAN JOURNAL OF BOTANY, 1972, 50 (11): : 2239 - &
  • [35] Detection of hidden structures in a photoexcited semiconductor via principal-component analysis
    Shiau, YH
    SOLID-STATE ELECTRONICS, 2006, 50 (02) : 191 - 198
  • [36] FUNCTIONAL CONNECTIVITY - THE PRINCIPAL-COMPONENT ANALYSIS OF LARGE (PET) DATA SETS
    FRISTON, KJ
    FRITH, CD
    LIDDLE, PF
    FRACKOWIAK, RSJ
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1993, 13 (01): : 5 - 14
  • [37] OPTIMAL SPARSE L1-NORM PRINCIPAL-COMPONENT ANALYSIS
    Chamadia, Shubham
    Pados, Dimitris A.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2686 - 2690
  • [38] Novel Algorithms for Lp-Quasi-Norm Principal-Component Analysis
    Chachlakis, Dimitris G.
    Markopoulos, Panos P.
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1045 - 1049
  • [39] Principal-component analysis of multiscale data for process monitoring and fault diagnosis
    Yoon, S
    MacGregor, JF
    AICHE JOURNAL, 2004, 50 (11) : 2891 - 2903
  • [40] Assessment of Sustainable Development Using Cluster Analysis and Principal Component Analysis
    Drastichova, Magdalena
    Filzmoser, Peter
    PROBLEMY EKOROZWOJU, 2019, 14 (02): : 7 - 24