Doubly robust semiparametric inference using regularized calibrated estimation with high-dimensional data

被引:8
|
作者
Ghosh, Sat Yajit [1 ]
Tan, Zhiqiang [1 ]
机构
[1] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
关键词
Average treatment effect; calibration estimation; debiased Lasso; double robustness; high-dimensional data; Lasso penalty; partially linear model; semiparametric estimation; CONFIDENCE-REGIONS; MODEL; REGRESSION; INTERVALS; SELECTION; TESTS;
D O I
10.3150/21-BEJ1378
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider semiparametric estimation where a doubly robust estimating function for a low-dimensional parameter is available, depending on two working models. With high-dimensional data, we develop regularized calibrated estimation as a general method for estimating the parameters in the two working models, such that valid Wald confidence intervals can be obtained for the parameter of interest under suitable sparsity conditions if either of the two working models is correctly specified. We propose a computationally tractable two-step algorithm and provide rigorous theoretical analysis which justifies sufficiently fast rates of convergence for the regularized calibrated estimators in spite of sequential construction and establishes a desired asymptotic expansion for the doubly robust estimator. As concrete examples, we discuss applications to partially linear, log-linear, and logistic models and estimation of average treatment effects. Numerical studies in the former three examples demonstrate superior performance of our method, compared with debiased Lasso.
引用
收藏
页码:1675 / 1703
页数:29
相关论文
共 50 条