Maximum General Sum-Connectivity Index for Trees with Given Independence Number

被引:0
|
作者
Tomescu, Ioan [1 ]
Jamil, Muhammad Kamran [2 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
关键词
TRENDS; GRAPHS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Des, Xu and Gutman [MATCH Commun. Math. Comput. Chem. 70(2013) 301-314] proved that in the class of trees of order n and independence number s, the spur S-n,S-s maximizes both first and second Zagreb indices and this graph is unique with these properties. In this paper, we show that in the same class of trees T, S-n,S-s is the unique graph maximizing zeroth-order general Randie index R-0(alpha)(T) for alpha > 1 and general sum-connectivity index x(alpha)(T) for alpha >= 1. This property does not hold for general Rancho index R-alpha(T) if alpha >= 2.
引用
收藏
页码:715 / 722
页数:8
相关论文
共 50 条