Fixed point results for decreasing convex orbital operators in Hilbert spaces

被引:8
|
作者
Petrusel, Adrian [1 ]
Petrusel, Gabriela [2 ]
机构
[1] Babes Bolyai Univ, Dept Math, Cluj Napoca 400084, Romania
[2] Babes Bolyai Univ, Dept Business, Cluj Napoca 400084, Romania
关键词
Hilbert space; contraction; graphic contraction; generalized contraction; convex orbital Lipschitz operator; decreasing operator; fixed point; Picard operator; weakly Picard operator; open problem; CONTRACTION-MAPPINGS; THEOREMS; STABILITY;
D O I
10.1007/s11784-021-00873-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, <.>) be a Hilbert space and T : X -> X be a decreasing operator. Under a metric condition involving the convex combination of x and T(x), we will prove some fixed point theorems which generalize and complement several results in the theory of nonlinear operators. Our results are closely related to the admissible perturbations approach in fixed point theory.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fixed point results for decreasing convex orbital operators in Hilbert spaces
    Adrian Petruşel
    Gabriela Petruşel
    Journal of Fixed Point Theory and Applications, 2021, 23
  • [2] Fixed-point results for convex orbital operators
    Popescu, Ovidiu
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [3] Fixed point results for generalized convex orbital Lipschitz operators
    Zhou, Mi
    Li, Guohui
    Saleem, Naeem
    Popescu, Ovidiu
    Secelean, Nicolae Adrian
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [4] A fixed point theorem for convex and decreasing operators
    Li, Ke
    Liang, Jin
    Xiao, Ti-Jun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E209 - E216
  • [5] Fixed point results in convex metric spaces
    Siriyan, Keerati
    Kangtunyakarn, Atid
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [6] Fixed point results in convex metric spaces
    Keerati Siriyan
    Atid Kangtunyakarn
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [7] Spaces of compact operators on a Hilbert space with the fixed point property
    Dowling, PN
    Randrianantoanina, N
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (01) : 111 - 120
  • [8] FIXED POINT THEOREMS FOR COMPACT POTENTIAL OPERATORS IN HILBERT SPACES
    Boucenna, A.
    Djebali, S.
    Moussaoui, T.
    FIXED POINT THEORY, 2017, 18 (02): : 493 - 502
  • [9] Fixed point theorems for a class of nonlinear operators in Hilbert spaces and applications
    Yujun Cui
    Jingxian Sun
    Positivity, 2011, 15 : 455 - 464
  • [10] Fixed point theorems for a class of nonlinear operators in Hilbert spaces and applications
    Cui, Yujun
    Sun, Jingxian
    POSITIVITY, 2011, 15 (03) : 455 - 464