Learning to Hash on Partial Multi-Modal Data

被引:0
|
作者
Wang, Qifan [1 ]
Si, Luo [1 ]
Shen, Bin [1 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing approach becomes popular for fast similarity search in many large scale applications. Real world data are usually with multiple modalities or having different representations from multiple sources. Various hashing methods have been proposed to generate compact binary codes from multi-modal data. However, most existing multi-modal hashing techniques assume that each data example appears in all modalities, or at least there is one modality containing all data examples. But in real applications, it is often the case that every modality suffers from the missing of some data and therefore results in many partial examples, i.e., examples with some modalities missing. In this paper, we present a novel hashing approach to deal with Partial Multi-Modal data. In particular, the hashing codes are learned by simultaneously ensuring the data consistency among different modalities via latent subspace learning, and preserving data similarity within the same modality through graph Laplacian. We then further improve the codes via orthogonal rotation based on the orthogonal invariant property of our formulation. Experiments on two multi-modal datasets demonstrate the superior performance of the proposed approach over several state-of-the-art multi-modal hashing methods.
引用
收藏
页码:3904 / 3910
页数:7
相关论文
共 50 条
  • [21] Multi-modal and multi-granular learning
    Zhang, Bo
    Zhang, Ling
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 9 - +
  • [22] Partial Multi-Modal Hashing via Neighbor-Aware Completion Learning
    Tan, Wentao
    Zhu, Lei
    Li, Jingjing
    Zhang, Zheng
    Zhang, Huaxiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8499 - 8510
  • [23] Learning in an Inclusive Multi-Modal Environment
    Graham, Deryn
    Benest, Ian
    Nicholl, Peter
    JOURNAL OF CASES ON INFORMATION TECHNOLOGY, 2010, 12 (03) : 28 - 44
  • [24] Learning of Multi-Modal Stimuli in Hawkmoths
    Balkenius, Anna
    Dacke, Marie
    PLOS ONE, 2013, 8 (07):
  • [25] Reliable Multi-modal Learning: A Survey
    Yang Y.
    Zhan D.-C.
    Jiang Y.
    Xiong H.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (04): : 1067 - 1081
  • [26] Multi-Modal Meta Continual Learning
    Gai, Sibo
    Chen, Zhengyu
    Wang, Donglin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [27] MULTI-MODAL LEARNING FOR GESTURE RECOGNITION
    Cao, Congqi
    Zhang, Yifan
    Lu, Hanqing
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2015,
  • [28] Learning multi-modal control programs
    Mehta, TR
    Egerstedt, M
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2005, 3414 : 466 - 479
  • [29] Imagery in multi-modal object learning
    Jüttner, M
    Rentschler, I
    BEHAVIORAL AND BRAIN SCIENCES, 2002, 25 (02) : 197 - +
  • [30] Multi-modal Network Representation Learning
    Zhang, Chuxu
    Jiang, Meng
    Zhang, Xiangliang
    Ye, Yanfang
    Chawla, Nitesh, V
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3557 - 3558