Location-Specific Responses to Thermal Stress in Larvae of the Reef-Building Coral Montastraea faveolata

被引:83
|
作者
Polato, Nicholas R. [1 ]
Voolstra, Christian R. [2 ]
Schnetzer, Julia [3 ]
DeSalvo, Michael K. [4 ]
Randall, Carly J. [5 ]
Szmant, Alina M. [5 ]
Medina, Monica [4 ]
Baums, Iliana B. [1 ]
机构
[1] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[2] King Abdullah Univ Sci & Technol, Red Sea Res Ctr, Thuwal, Saudi Arabia
[3] Max Planck Inst Marine Microbiol, Bremen, Germany
[4] Univ Calif Merced, Sch Nat Sci, Merced, CA USA
[5] Univ N Carolina, Ctr Marine Sci, Wilmington, NC 28401 USA
来源
PLOS ONE | 2010年 / 5卷 / 06期
基金
美国国家科学基金会;
关键词
HEAT-SHOCK PROTEINS; GENE-EXPRESSION; ELEVATED-TEMPERATURE; SCLERACTINIAN CORAL; CARIBBEAN CORAL; OXIDATIVE STRESS; ACROPORA-PALMATA; CLIMATE-CHANGE; ELKHORN CORAL; SETTLEMENT;
D O I
10.1371/journal.pone.0011221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations. Methodology/Principal Findings: To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean) temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral. Conclusions/Significance: These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Montastraea faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in decline
    Kimes, Nikole E.
    Johnson, Wesley R.
    Torralba, Manolito
    Nelson, Karen E.
    Weil, Ernesto
    Morris, Pamela J.
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2013, 15 (07) : 2082 - 2094
  • [2] Depth-independent reproductive characteristics for the Caribbean reef-building coral Montastraea faveolata
    J. T. Villinski
    [J]. Marine Biology, 2003, 142 : 1043 - 1053
  • [3] Depth-independent reproductive characteristics for the Caribbean reef-building coral Montastraea faveolata
    Villinski, JT
    [J]. MARINE BIOLOGY, 2003, 142 (06) : 1043 - 1053
  • [4] Yellow band disease compromises the reproductive output of the Caribbean reef-building coral Montastraea faveolata (Anthozoa, Scleractinia)
    Weil, Ernesto
    Croquer, Aldo
    Urreiztieta, Isabel
    [J]. DISEASES OF AQUATIC ORGANISMS, 2009, 87 (1-2) : 45 - 55
  • [5] Demographics of bleaching in a major Caribbean reef-building coral: Montastraea annularis
    Hernandez-Pacheco, R.
    Hernandez-Delgado, E. A.
    Sabat, A. M.
    [J]. ECOSPHERE, 2011, 2 (01):
  • [6] Competitive effects of macroalgae on the fecundity of the reef-building coral Montastraea annularis
    Foster, Nicola L.
    Box, Steve J.
    Mumby, Peter J.
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2008, 367 : 143 - 152
  • [7] Hyperspectral Sensing of Disease Stress in the Caribbean Reef-Building Coral, Orbicella faveolata - Perspectives for the Field of Coral Disease Monitoring
    Anderson, David A.
    Armstrong, Roy A.
    Weil, Ernesto
    [J]. PLOS ONE, 2013, 8 (12):
  • [8] Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae
    Barott, Katie L.
    Rodriguez-Mueller, Beltran
    Youle, Merry
    Marhaver, Kristen L.
    Vermeij, Mark J. A.
    Smith, Jennifer E.
    Rohwer, Forest L.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2012, 279 (1733) : 1655 - 1664
  • [9] Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease
    Daniels, Camille A.
    Baumgarten, Sebastian
    Yum, Lauren K.
    Michell, Craig T.
    Bayer, Till
    Arif, Chatchanit
    Roder, Cornelia
    Weil, Ernesto
    Voolstra, Christian R.
    [J]. FRONTIERS IN MARINE SCIENCE, 2015, 2
  • [10] Mercury in the Southwestern Atlantic reef-building coral Montastraea cavernosa (Cnidaria, Scleractinia)
    Menezes, Natália
    Felix, Caio
    Cruz, Igor
    Martinez, Sabrina Teixeira
    da Rocha, Gisele O.
    Leão, Zelinda M.A.N.
    de Andrade, Jailson B.
    [J]. Chemosphere, 2024, 363