New Numerical Approach for Fractional Variational Problems Using Shifted Legendre Orthonormal Polynomials

被引:41
|
作者
Ezz-Eldien, Samer S. [1 ]
Hafez, Ramy M. [2 ]
Bhrawy, Ali H. [3 ]
Baleanu, Dumitru [4 ,5 ]
El-Kalaawy, Ahmed A. [3 ]
机构
[1] Assiut Univ, Fac Sci, Dept Math, New Valley Branch, El Kharja 72511, Egypt
[2] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt
[3] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[4] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-0630 Ankara, Turkey
[5] Inst Space Sci, Magurele, Romania
关键词
Fractional variational problems; Lagrange multiplier technique; Riemann-Liouville integrals; Operational matrix; Legendre polynomials; PARTIAL-DIFFERENTIAL-EQUATIONS; CALCULUS; APPROXIMATION; TERMS;
D O I
10.1007/s10957-016-0886-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper reports a new numerical approach for numerically solving types of fractional variational problems. In our approach, we use the fractional integrals operational matrix, described in the sense of Riemann-Liouville, with the help of the Lagrange multiplier technique for converting the fractional variational problem into an easier problem that consisting of solving an algebraic equations system in the unknown coefficients. Several numerical examples are introduced, combined with their approximate solutions and comparisons with other numerical approaches, for confirming the accuracy and applicability of the proposed approach.
引用
收藏
页码:295 / 320
页数:26
相关论文
共 50 条
  • [21] New Operational Matrix For Shifted Legendre Polynomials and Fractional Differential Equations With Variable Coefficients
    Khalil, Hammad
    Khan, Rahmat Ali
    Al-Smadi, Mohammed H.
    Freihat, Asad A.
    Shawagfeh, Nabil
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2015, 47 (01): : 81 - 103
  • [22] State Estimation using Shifted Legendre Polynomials
    Mohan, B. M.
    Kar, Sanjeeb Kumar
    IEEE REGION 10 COLLOQUIUM AND THIRD INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, VOLS 1 AND 2, 2008, : 42 - 47
  • [23] Numerical approach for solving nonlinear stochastic Ito-Volterra integral equations using shifted Legendre polynomials
    Zeghdane, Rebiha
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (01) : 69 - 88
  • [24] A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations
    A. H. Bhrawy
    E. H. Doha
    S. S. Ezz-Eldien
    M. A. Abdelkawy
    Calcolo, 2016, 53 : 1 - 17
  • [25] A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations
    Bhrawy, A. H.
    Doha, E. H.
    Ezz-Eldien, S. S.
    Abdelkawy, M. A.
    CALCOLO, 2016, 53 (01) : 1 - 17
  • [26] Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials
    El-Sayed, Adel A.
    Agarwal, Praveen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 3978 - 3991
  • [27] Numerical solution of nonlinear fractal-fractional optimal control problems by Legendre polynomials
    Heydari, Mohammad Hossein
    Atangana, Abdon
    Avazzadeh, Zakieh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2952 - 2963
  • [28] Numerical solution of the conformable differential equations via shifted Legendre polynomials
    Yaslan, H. Cerdik
    Mutlu, Ferdi
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (05) : 1016 - 1028
  • [29] Fractional delay integrodifferential equations of nonsingular kernels: existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials
    Sweis, Hind
    Abu Arqub, Omar
    Shawagfeh, Nabil
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (04):
  • [30] SHIFTED LEGENDRE FRACTIONAL PSEUDOSPECTRAL DIFFERENTIATION MATRICES FOR SOLVING FRACTIONAL DIFFERENTIAL PROBLEMS
    Abdelhakem, Mohamed
    Abdelhamied, Dina
    Alshehri, Maryam G.
    El-Kady, Mamdouh
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)