Droplet dynamics under an impinging air jet

被引:2
|
作者
Chen, Zih-Yin [1 ]
Hooshanginejad, Alireza [2 ]
Kumar, Satish [3 ]
Lee, Sungyon [1 ]
机构
[1] Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA
[2] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
[3] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
drops; contact lines; lubrication theory; THIN LIQUID-FILMS; GAS-JET; SHEAR; IMPINGEMENT; SIMULATION; SUBSTRATE; GRAVITY; ROUGH; MODEL; WALL;
D O I
10.1017/jfm.2022.450
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Partially wetting droplets under an airflow can exhibit complex behaviours that arise from the coupling of surface tension, inertia of the external flow and contact-line dynamics. Recent experiments by Hooshanginejad et al. (J. Fluid Mech., vol. 901, 2020) revealed that a millimetric partially wetting water droplet under an impinging jet can oscillate in place, split or depin away from the jet, depending on the magnitude (i.e. 5-20 m s(-1)) and position of the jet. To rationalise the experimental observations, we develop a two-dimensional lubrication model of the droplet that incorporates the external pressure of the impinging high-Reynolds-number jet, in addition to the capillary and hydrostatic pressures of the droplet. Distinct from the previous model by Hooshanginejad et al. (J. Fluid Mech., vol. 901, 2020), we simulate the motion of the contact line using precursor film and disjoining pressure, which allows us to capture a wider range of droplet behaviours, including the droplet dislodging to one side. Our simulations exhibit a comparable time-scale of droplet deformations and similar outcomes as the experimental observations. We also obtain the analytical steady-state solutions of the droplet shapes and construct the minimum criteria for splitting and depinning.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Influence of turbulator under the detached rib on heat transfer study of air jet impinging on a flat surface
    Talapati, R. J.
    Katti, V. V.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 184
  • [42] Determination of local heat-transfer coefficients around a circular cylinder under an impinging air jet
    Olsson, E. E. M.
    Janestad, H.
    Ahrne, L. M.
    Tragardh, A. C.
    Singh, R. P.
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2008, 11 (03) : 600 - 612
  • [43] PARTICLE MOTION IN THE STAGNATION ZONE OF AN IMPINGING AIR-JET
    ANDERSON, SL
    LONGMIRE, EK
    JOURNAL OF FLUID MECHANICS, 1995, 299 : 333 - 366
  • [44] Effect of acoustic excitation on the heat transfer to an impinging air jet
    O'Donovan, Tadhg S.
    Murray, Darina B.
    PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 3, 2007, : 183 - 191
  • [45] EVAPORATION UNDER AN IMPINGING JET - A NUMERICAL-MODEL
    MUJUMDAR, AS
    LI, YK
    DOUGLAS, WJM
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1980, 58 (04): : 448 - 453
  • [46] Modeling of transition boiling under an impinging water jet
    Ahmed, A. B.
    Hamed, M. S.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 91 : 1273 - 1282
  • [47] INSTABILITY OF AN ARTICULATED CANTILEVER INDUCED BY AN IMPINGING AIR-JET
    QIU, ZL
    NEMATNASSER, S
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1985, 21 (02) : 145 - 154
  • [48] Experimental studies on air-assisted impinging jet atomization
    Avulapati, Madan Mohan
    Venkata, Ravikrishna Rayavarapu
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2013, 57 : 88 - 101
  • [49] Atomization of impinging opposed water jets interacting with an air jet
    Xia, Yakang
    Khezzar, Lyes
    Alshehhi, Mohamed
    Hardalupas, Yannis
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 93 : 11 - 22
  • [50] Investigation of the thermohydraulic performance of impinging jet solar air heater
    Chauhan, Ranchan
    Thakur, N. S.
    ENERGY, 2014, 68 : 255 - 261