Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: A density functional theory study

被引:22
|
作者
Zhao, Wenwen [1 ]
Tian, Feng Hui [1 ]
Wang, Xiaobin [1 ]
Zhao, Linghuan [1 ]
Wang, Yun [2 ]
Fu, Aiping [1 ]
Yuan, Shuping [1 ]
Chu, Tianshu [1 ]
Xia, Linhua [1 ]
Yu, Jimmy C. [3 ]
Duan, Yunbo [1 ]
机构
[1] Qingdao Univ, Inst Computat Sci & Engn, Lab New Fiber Mat & Modern Text, Growing Base State Key Lab, Qingdao 266071, Peoples R China
[2] Griffith Univ, Griffith Sch Environm, Ctr Clean Environm & Energy, Gold Coast Campus, Qld 4222, Australia
[3] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
关键词
NO adsorption; Highly reactive anatase TiO2 (001) surface; Density functional theory; Nitrite species (NO2-); Trapping; PHOTOCATALYTIC OXIDATION; TITANIUM-DIOXIDE; NITROGEN-OXIDES; TIO2(110) SURFACE; NO OXIDATION; ADSORPTION; FACETS; MOLECULES; RUTILE; FILMS;
D O I
10.1016/j.jcis.2014.05.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2-) trapping efficiently on the surface, with one of the surface Ti-5c-O-2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 50 条
  • [21] Density Functional Theory Study on the Interfacial Interaction of LiF (200) and Anatase TiO2 (101)
    Wang, Zhuo
    Liu, Hao
    Bao, Yuwen
    Gao, Yun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (01) : 739 - 743
  • [22] Stability and dynamics of carbon and nitrogen dopants in anatase TiO2: A density functional theory study
    Tsetseris, L.
    PHYSICAL REVIEW B, 2010, 81 (16):
  • [23] Pt-incorporated anatase TiO2(001) surface for solar cell applications: First-principles density functional theory calculations
    Mete, E.
    Uner, D.
    Gulseren, O.
    Ellialtioglu, S.
    PHYSICAL REVIEW B, 2009, 79 (12):
  • [24] Density functional theory investigation of Pr adsorption on the anatase TiO2(101) surface for photovoltaic applications
    Vural, Kivilcim Basak
    Kaderoglu, Cagil
    Ellialtioglu, Sinasi
    APPLIED SURFACE SCIENCE, 2023, 613
  • [25] Understanding the interaction of water with anatase TiO2 (101) surface from density functional theory calculations
    Zhao, Zongyan
    Li, Zhaosheng
    Zou, Zhigang
    PHYSICS LETTERS A, 2011, 375 (32) : 2939 - 2945
  • [26] Density Functional Theory Calculations of Arsenic(III) Structures on Perfect TiO2 Anatase (101) Surface
    Ye, Lin
    Liu, Yue
    Wei, Zhigang
    Diao, Guiqiang
    Sun, Ming
    Yu, Qian
    FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 233-235 : 491 - 494
  • [27] Density Functional Theory Calculations of Arsenic(V) Structures on Perfect TiO2 Anatase (101) Surface
    Wei, Zhigang
    Zou, Yandi
    Zeng, Haixia
    Zhong, Xuechun
    Cheng, Zhenjun
    Xie, Shuguang
    FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 233-235 : 495 - 498
  • [28] Density-functional molecular dynamics study on interfacial water on TiO2 anatase (101) and (001) surfaces
    Tateyama, Yoshitaka
    Sumita, Masato
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [29] Adsorption of selected ions on the anatase TiO2 (101) surface: a density-functional study
    Bruska, Marta Kinga
    Szacilowski, Konrad
    Piechota, Jacek
    MOLECULAR SIMULATION, 2009, 35 (07) : 567 - 576
  • [30] Density Functional Study of Boron-Doped Anatase TiO2
    Yang, Kesong
    Dai, Ying
    Huang, Baibiao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (46): : 19830 - 19834