Optimized process for fabrication of free-standing silicon nanophotonic devices

被引:4
|
作者
Seidler, Paul [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
来源
基金
英国惠康基金;
关键词
CRYSTAL NANOBEAM CAVITY; ETCH PROCESS; CORROSION; FLUORIDE; SURFACE;
D O I
10.1116/1.4983173
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A detailed procedure is presented for fabrication of free-standing silicon photonic devices that accurately reproduces design dimensions while minimizing surface roughness. By reducing charging effects during inductively coupled-plasma reactive ion etching, undercutting in small, high-aspect ratio openings is reduced. Slot structures with a width as small as 40 nm and an aspect ratio of 5.5: 1 can be produced with a nearly straight, vertical sidewall profile. Subsequent removal of an underlying sacrificial silicon dioxide layer by wet-etching to create free-standing devices is performed under conditions which suppress attack of the silicon. Slotted one-dimensional photonic crystal cavities are used as sensitive test structures to demonstrate that performance specifications can be reached without iteratively adapting design dimensions; optical resonance frequencies are within 1% of the simulated values and quality factors on the order of 10 5 are routinely attained. (C) 2017 Author(s).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fabrication of free-standing porous silicon microstructures
    Garel, O.
    Breluzeau, C.
    Dufour-Gergam, E.
    Bosseboeuf, A.
    Belier, B.
    Mathet, V.
    Verjus, F.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) : S164 - S167
  • [2] Fabrication of phononic crystals on free-standing silicon membranes
    Sledzinska, M.
    Graczykowski, B.
    Alzina, F.
    Santiso Lopez, J.
    Sotomayor Torres, C. M.
    MICROELECTRONIC ENGINEERING, 2016, 149 : 41 - 45
  • [3] Free-standing silicon shadow masks for transmon qubit fabrication
    Tsioutsios, I.
    Serniak, K.
    Diamond, S.
    Sivak, V. V.
    Wang, Z.
    Shankar, S.
    Frunzio, L.
    Schoelkopf, R. J.
    Devoret, M. H.
    AIP ADVANCES, 2020, 10 (06)
  • [4] Fabrication of free-standing silicon carbide on silicon microstructures via massive silicon sublimation
    Amjadipour, Mojtaba
    MacLeod, Jennifer
    Motta, Nunzio
    Iacopi, Francesca
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2020, 38 (06):
  • [5] Fabrication of free-standing diamond membranes
    Salvadori, MC
    Cattani, M
    Mammana, V
    Monteiro, OR
    Ager, JW
    Brown, IG
    THIN SOLID FILMS, 1996, 290 : 157 - 160
  • [6] Fabrication Process for Free-Standing Smart Hydrogel Pillars for Sensing Applications
    Farhoudi, Navid
    Magda, Jules J.
    Solzbacher, Florian
    Reiche, Christopher F.
    2020 IEEE SENSORS, 2020,
  • [7] Graphene resist interlacing process for versatile fabrication of free-standing graphene
    Kumar, S.
    Rezvani, E.
    Nicolosi, V.
    Duesberg, G. S.
    NANOTECHNOLOGY, 2012, 23 (14)
  • [8] Fabrication of piezodriven, free-standing, all-oxide heteroepitaxial cantilevers on silicon
    Banerjee, N.
    Houwman, E. P.
    Koster, G.
    Rijnders, G.
    APL MATERIALS, 2014, 2 (09):
  • [9] Novel separation process for free-standing silicon thin-films
    Tobail, O.
    Reuter, M.
    Eisele, S.
    Werner, J. H.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) : 710 - 712
  • [10] Fabricating processes of free-standing silicon nitride thin film for MEMS devices
    Shi, Shuai
    Wang, Xuefang
    Xu, Chunlin
    Yuan, Jiaojiao
    Fang, Jing
    Jiang, Shengwei
    Liu, Sheng
    2013 14TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2013, : 23 - 26