Typical weak and superweak values

被引:26
|
作者
Berry, M. V. [1 ]
Shukla, P. [2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Indian Inst Technol, Dept Phys, Kharagpur 721302, W Bengal, India
关键词
D O I
10.1088/1751-8113/43/35/354024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Weak values, resulting from the action of an operator on a preselected state when measured after postselection by a different state, can lie outside the spectrum of eigenvalues of the operator: they can be 'superweak'. This phenomenon can be quantified by averaging over an ensemble of the two states, and calculating the probability distribution of the weak values. If there are many eigenvalues, distributed within a finite range, this distribution takes a simple universal generalized lorentzian form, and the 'superweak probablility', of weak values outside the spectrum, can be as large as 1-1/root 2 = 0.293.... By contrast, the familiar expectation values always lie within the spectral range, and their distribution, although approximately gaussian for many eigenvalues, is not universal.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Measures of pseudorandomness for finite sequences:: Typical values
    Alon, N.
    Kohayakawa, Y.
    Mauduit, C.
    Moreira, C. G.
    Roedl, V.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 95 : 778 - 812
  • [42] On the interpretation of quantum mechanical weak values
    Svensson, B. E. Y.
    PHYSICA SCRIPTA, 2014, T163
  • [43] Simple understanding of quantum weak values
    Lupei Qin
    Wei Feng
    Xin-Qi Li
    Scientific Reports, 6
  • [44] Weak values under uncertain conditions
    Romito, Alessandro
    Gefen, Yuval
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (03): : 343 - 347
  • [45] Weak values and the past of a quantum particle
    Hance, Jonte R.
    Rarity, John
    Ladyman, James
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [46] Noise from the Perspective of Weak Values
    Gray, John E.
    Parks, Allen D.
    QUANTUM INFORMATION AND COMPUTATION VIII, 2010, 7702
  • [47] Simple understanding of quantum weak values
    Qin, Lupei
    Feng, Wei
    Li, Xin-Qi
    SCIENTIFIC REPORTS, 2016, 6
  • [48] WEAK MAJORIZATION INEQUALITIES FOR SINGULAR VALUES
    Zou, Limin
    He, Chuanjiang
    OPERATORS AND MATRICES, 2013, 7 (03): : 733 - 737
  • [49] Weak values and the quantum phase space
    Lobo, A. C.
    Ribeiro, C. A.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [50] The reconstruction problem and weak quantum values
    de Gosson, Maurice A.
    de Gosson, Serge M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (11)