Combinatorics of geometrically distributed random variables: Words and permutations avoiding two or three adjacent patterns

被引:0
|
作者
Tshifhumulo, TA [1 ]
机构
[1] Univ Venda, ZA-0950 Thohoyandou, South Africa
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A word w = w(1)w(2)...w(n) avoids an adjacent pattern tau iff w has no subsequence of adjacent letters having all the same pairwise comparisons as tau. In [12] and [13] the concept of words and permutations avoiding single adjacent pattern was introduced. We investigate the probability that words and permutations of length n avoid two or three adjacent patterns.
引用
收藏
页码:275 / 288
页数:14
相关论文
共 50 条
  • [31] Normal approximations of the number of records in geometrically distributed random variables
    Bai, ZD
    Hwang, HK
    Liang, WQ
    RANDOM STRUCTURES & ALGORITHMS, 1998, 13 (3-4) : 319 - 334
  • [32] Run statistics for geometrically distributed random variables - (Extended abstract)
    Grabner, PJ
    Knopfmacher, A
    Prodinger, H
    LATIN 2000: THEORETICAL INFORMATICS, 2000, 1776 : 457 - 462
  • [33] The number of distinct adjacent pairs in geometrically distributed words: a probabilistic and combinatorial analysis
    Louchard, Guy
    Schachinger, Werner
    Ward, Mark Daniel
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2023, 25 (02):
  • [34] Catalan words avoiding pairs of length three patterns
    Baril, Jean-Luc
    Khalil, Carine
    Vajnovszki, Vincent
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 22 (02):
  • [35] Crossings over Permutations Avoiding Some Pairs of Patterns of Length Three
    Rakotomamonjy, Paul M.
    Andriantsoa, Sandrataniaina R.
    Randrianarivony, Arthur
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (06)
  • [36] Enumerating Permutations Avoiding Three Babson-Steingrímsson Patterns
    Antonio Bernini
    Luca Ferrari
    Renzo Pinzani
    Annals of Combinatorics, 2005, 9 : 137 - 162
  • [37] Optimal prefix codes for pairs of geometrically-distributed random variables
    Bassino, Frederique
    Clement, Julien
    Seroussi, Gadiel
    Viola, Alfredo
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2667 - +
  • [38] Ascending runs of sequences of geometrically distributed random variables: a probabilistic analysis
    Louchard, G
    Prodinger, H
    THEORETICAL COMPUTER SCIENCE, 2003, 304 (1-3) : 59 - 86
  • [39] Weak limits of standardized sums of independent geometrically distributed random variables
    Adell, Jose A.
    STATISTICS & PROBABILITY LETTERS, 2025, 222
  • [40] Clustering of consecutive numbers in permutations avoiding a pattern of length three or avoiding a finite number of simple patterns
    Pinsky, Ross G.
    DISCRETE MATHEMATICS, 2024, 347 (12)