Hydrothermal synthesis of antimony oxychlorides submicron rods as anode materials for lithium-ion batteries and sodium-ion batteries

被引:47
|
作者
Xie, Jianjun [1 ]
Pei, Yi [2 ]
Liu, Li [1 ,4 ]
Guo, Shengping [3 ]
Xia, Jing [1 ]
Li, Min [1 ]
Ouyang, Yan [1 ]
Zhang, Xiaoyan [1 ]
Wang, Xianyou [1 ]
机构
[1] Xiangtan Univ, Hunan Prov Key Lab Electrochem Energy Storage & C, Natl Local Joint Engn Lab Key Mat New Energy Stor, Natl Base Int Sci & Technol Cooperat,Sch Chem, Xiangtan 411105, Peoples R China
[2] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[3] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
[4] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
关键词
Antimony oxychlorides; Submicron rods; Anode materials; Lithium-ion batteries; Sodium-ion batteries; FACILE SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; RATE CAPABILITY; DOPED GRAPHENE; DURABLE ANODE; HIGH-CAPACITY; COMPOSITE; SB2S3; MECHANISM; ORIGIN;
D O I
10.1016/j.electacta.2017.09.136
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Antimony oxychlorides submicron rods have been successfully synthesized by a simple and facile hydrothermal reaction, as characterized by a series of physical tests. Antimony oxychlorides material shows outstanding lithium-storage performance, which has a high initial discharge capacity of 1355.6 mAh g(-1) and maintaining a discharge capacity of 402 mAh g(-1) after 100 cycles at a current density of 50 mA g(-1) in the voltage range of 0.01-2.0 V (vs. Li/Li+). Even up to 5000 mA g(-1), the discharge capacity of 485 mAh g(-1) is obtained, indicating an excellent rate capability and a prominent cycle performance. What's more, antimony oxychlorides material also exhibits brilliant cycle property in NIBs at a current density of 50 mA g(-1) in the voltage range of 0.01-2.0 V (vs. Na/Na+). Antimony oxychlorides submicron rods have remarkable rate performance and distinguished cycle capability, indicating that antimony oxychlorides material is one of promising anode materials for both lithium-ion batteries and sodium-ion batteries. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 50 条
  • [21] Germanium in Lithium-Ion and Sodium-Ion Batteries (A Review)
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2021, 57 : 1105 - 1137
  • [22] Direct antimony recovery from wastewater as anode materials for sodium-ion batteries
    Guo, Lu
    Vafakhah, Sareh
    Ding, Meng
    Pam, Mei Er
    Wang, Ye
    Shang, Yang
    Huang, Shaozhuan
    Gu, Chengding
    Von Lim, Yew
    Yang, Hui Ying
    MATERIALS TODAY ENERGY, 2020, 16
  • [23] Electrodeposition of Tin and Antimony-Based Anode Materials for Sodium-Ion Batteries
    Gallawa, Jessica R.
    Ma, Jeffrey
    Prieto, Amy L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (04)
  • [24] Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning
    Li, Weihan
    Zeng, Linchao
    Wu, Ying
    Yu, Yan
    SCIENCE CHINA-MATERIALS, 2016, 59 (04) : 287 - 321
  • [25] Anode materials for lithium-ion batteries: A review
    Nzereogu, P. U.
    Omah, A. D.
    Ezema, F. I.
    Iwuoha, E. I.
    Nwanya, A. C.
    APPLIED SURFACE SCIENCE ADVANCES, 2022, 9
  • [26] Recent developments in centrifugally spun composite fibers and their performance as anode materials for lithium-ion and sodium-ion batteries
    Chavez, Roberto Orrostieta
    Lodge, Timothy P.
    Alcoutlabi, Mataz
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 266
  • [27] Hydrothermal Synthesis of Sodium Titanium Phosphate Nanoparticles as Efficient Anode Materials for Aqueous Sodium-Ion Batteries
    Hung, Tai-Feng
    Lan, Wei-Hsuan
    Yeh, Yu -Wen
    Chang, Wen-Sheng
    Yang, Chang-Chung
    Lin, Jing-Chie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (12): : 7074 - 7079
  • [28] Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution
    Li, Junshan
    Xu, Xijun
    Luo, Zhishan
    Zhang, Chaoqi
    Yu, Xiaoting
    Zuo, Yong
    Zhang, Ting
    Tang, Pengyi
    Arbiol, Jordi
    Llorca, Jordi
    Liu, Jun
    Cabot, Andreu
    ELECTROCHIMICA ACTA, 2019, 304 : 246 - 254
  • [29] Temperature Effects on the Performance of Lithium-Ion and Sodium-Ion Batteries
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2021, 57 (07) : 700 - 705
  • [30] Forcespinning of Microfibers and their Applications in Lithium-ion and Sodium-ion Batteries
    Agubra, V. A.
    Zuniga, L.
    Flores, D.
    Alcoutlabi, M.
    JOINT GENERAL SESSION: BATTERIES AND ENERGY STORAGE -AND- FUEL CELLS, ELECTROLYTES, AND ENERGY CONVERSION, 2016, 72 (08): : 57 - 65