Solution of the vector wave equation by the separable effective adiabatic basis set method

被引:2
|
作者
Gokhberg, K
Vorobeichik, I
Narevicius, E
Moiseyev, N [1 ]
机构
[1] OpTun Ltd, MTM Sci Ind Ctr, IL-31905 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Chem, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Minerva Ctr Nonlinear Phys Complex Syst, IL-32000 Haifa, Israel
关键词
D O I
10.1364/JOSAB.21.001809
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A novel separable effective adiabatic basis (SEAB) for the solution of the transverse vector wave equation by the variational method is presented. The basis is constructed by a suitably modified adiabatic approximation. The method of SEAB construction is applicable to the waveguides of a general cross section. By calculating scalar modes in rectangular and rib waveguides, we show that the use of SEAB entails computational effort several orders of magnitude less than the use of the more conventional Fourier basis. As an illustrative example, the polarized modes of a rib waveguide are calculated. (C) 2004 Optical Society of America.
引用
收藏
页码:1809 / 1817
页数:9
相关论文
共 50 条
  • [22] Localized atomic basis set in the projector augmented wave method
    Larsen, A. H.
    Vanin, M.
    Mortensen, J. J.
    Thygesen, K. S.
    Jacobsen, K. W.
    PHYSICAL REVIEW B, 2009, 80 (19):
  • [23] Solution of wave equation by Adomian decomposition method and the restrictions of the method
    Biazar, J
    Islam, R
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (03) : 807 - 814
  • [24] Non homogeneous solution to a Coulomb Schrodinger equation as a basis set for scattering problems
    Del Punta, J. A.
    Ambrosio, M. J.
    Gasaneo, G.
    Mitnik, D. M.
    Ancarani, L. U.
    Zaytsev, S. A.
    XXVIII INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC), 2014, 488
  • [25] Sparse adaptive basis set methods for solution of the time dependent Schrodinger equation
    Thompson, Keiran C.
    Martinez, Todd J.
    MOLECULAR PHYSICS, 2024, 122 (7-8)
  • [26] FINITE-BASIS-SET VARIATIONAL SOLUTION OF THE DIRAC-EQUATION - COMMENT
    GOLDMAN, SP
    PHYSICAL REVIEW A, 1990, 41 (11): : 6526 - 6528
  • [27] Basis set approach to solution of Poisson equation for small molecules immersed in solvent
    David, L
    Field, MJ
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1997, 18 (03) : 343 - 350
  • [29] SOLUTION OF WAVE-EQUATION USING MULTIRESOLUTION MULTIWAVELET BASIS FUNCTION
    Sekino, Hideo
    Okamoto, Takumi
    Hamada, Shinji
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 355 - 358
  • [30] Forward-backward solution of quantum-classical Liouville equation in the adiabatic mapping basis
    Hsieh, Chang-Yu
    Schofield, Jeremy
    Kapral, Raymond
    MOLECULAR PHYSICS, 2013, 111 (22-23) : 3546 - 3554