THE HERMITIAN CURVATURE FLOW ON MANIFOLDS WITH NON-NEGATIVE GRIFFITHS CURVATURE

被引:23
|
作者
Ustinovskiy, Yury [1 ]
机构
[1] Courant Inst Math Sci, Dept Math, New York, NY 10012 USA
关键词
PROJECTIVE-MANIFOLDS; CLASSIFICATION;
D O I
10.1353/ajm.2019.0046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a particular version of the Hermitian curvature flow (HCF) over a compact complex Hermitian manifold (M, g, J). We prove that if the initial metric has Griffiths positive (non-negative) Chem curvature Omega, then this property is preserved along the flow. On a manifold with Griffiths non-negative Chern curvature the HCF has nice regularization properties, in particular, for any t > 0 the zero set of Omega(xi, (xi) over bar, eta, (eta) over bar) becomes invariant under certain torsion-twisted parallel transport.
引用
收藏
页码:1751 / 1775
页数:25
相关论文
共 50 条