Relative Measures to Characterize EEG Signals for Early Detection of Alzheimer

被引:0
|
作者
Sharma, Aarti [1 ]
Rai, J. K. [2 ]
Tewari, R. P. [3 ]
机构
[1] Inderprastha Engn Coll, Dept ECE, Ghaziabad, India
[2] Amity Univ, ASET, Dept ECE, Noida, Uttar Pradesh, India
[3] MNNIT, Appl Mech Dept, Allahabad, Uttar Pradesh, India
关键词
Alzheimer Disease (AD); Electroencephalogram (EEG); entropy; feature selection; Mild Cognitive Impairment (MCI); DISEASE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Number of Alzheimer's patients are continuously increasing worldwide. Early detection of Alzheimer will improve patients life and world health care cost. A lot of modalities are there with the help of which Alzheimer can be detected at an early stage. But choosing a potential feature is a challenging task. In the present study we investigate frequency relative energy, frequency relative power and relative entropy from the dataset of Mild Cognitive Impairment (MCI), Normal and Dementia subjects. Bhattacharya distance is used to rank the aforementioned features that can classify between MCI, Control and Dementia subjects. Relative Entropy is identified as the best feature for classification. All the findings are statistically validated using Kruskal-Walis test. The selection of the relevant feature will be beneficial for early Alzheimer detection and may increase the quality of life of the patients suffering from the disease.
引用
收藏
页码:43 / 48
页数:6
相关论文
共 50 条
  • [21] Outlier detection in EEG signals
    Duraj, Agnieszka
    Chomatek, Lukasz
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (01): : 237 - 240
  • [22] Shannon entropy measures for EEG signals in tinnitus
    Sadeghijam, Maryam
    Talebian, Saeed
    Mohsen, Samer
    Akbari, Mehdi
    Pourbakht, Akram
    NEUROSCIENCE LETTERS, 2021, 762
  • [23] Validity of dimensional complexity measures of EEG signals
    Pradhan, N
    Sadasivan, PK
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (01): : 173 - 186
  • [24] EEG Synchrony Analysis for Early Diagnosis of Alzheimer's Disease: A Study with Several Synchrony Measures and EEG Data Sets
    Dauwels, Justin
    Vialatte, Francois
    Latchoumane, Charles
    Jeong, Jaeseung
    Cichocki, Andrzej
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 2224 - +
  • [25] Sugihara causality analysis of scalp EEG for detection of early Alzheimer's disease
    McBride, Joseph C.
    Zhao, Xiaopeng
    Munro, Nancy B.
    Jicha, Gregory A.
    Schmitt, Frederick A.
    Kryscio, Richard J.
    Smith, Charles D.
    Jiang, Yang
    NEUROIMAGE-CLINICAL, 2015, 7 : 258 - 265
  • [26] USING COARSE-GRAINED MEASURES TO CHARACTERIZE ELECTROMYOGRAPHIC SIGNALS
    Rapp, P. E.
    Goldberg, G.
    Albano, A. M.
    Janicki, M. B.
    Murphy, D.
    Niemeyer, E.
    Jimenez-Montano, M. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (03): : 525 - 541
  • [27] Techniques for early detection of Alzheimer's disease using spontaneous EEG recordings
    Woon, W. L.
    Cichocki, A.
    Vialatte, F.
    Musha, T.
    PHYSIOLOGICAL MEASUREMENT, 2007, 28 (04) : 335 - 347
  • [28] Detection of Alzheimer's Disease from EEG Signals Using Explainable Artificial Intelligence Analysis
    Arabaci, Bahadir
    Ocal, Hakan
    Polat, Kemal
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [29] N-BodyPat: Investigation on the dementia and Alzheimer's disorder detection using EEG signals
    Barua, Prabal Datta
    Tuncer, Turker
    Baygin, Mehmet
    Dogan, Sengul
    Acharya, U. Rajendra
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [30] Deep Neural Network Model for Automated Detection of Alzheimer's Disease using EEG Signals
    Deshmukh, Atharva
    Karki, Maya, V
    Bhuvan, S. R.
    Gaurav, S.
    Hitesh, J. P.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (08) : 115 - 126