Binocular Multi-CNN System for Real-Time 3D Pose Estimation

被引:1
|
作者
Niemirepo, Teo T. [1 ]
Viitanen, Marko [1 ]
Vanne, Jarno [1 ]
机构
[1] Tampere Univ, Ultra Video Grp, Tampere, Finland
基金
芬兰科学院;
关键词
3D pose estimation; Convolutional neural network (CNN); Stereo vision; Multi-CNN fusion; Open-source software;
D O I
10.1145/3394171.3414456
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The current practical approaches for depth-aware pose estimation convert a human pose from a monocular 2D image into 3D space with a single computationally intensive convolutional neural network (CNN). This paper introduces the first open-source algorithm for binocular 3D pose estimation. It uses two separate lightweight CNNs to estimate disparity/depth information from a stereoscopic camera input. This multi-CNN fusion scheme makes it possible to perform full-depth sensing in real time on a consumer-grade laptop even if parts of the human body are invisible or occluded. Our real-time system is validated with a proof-of-concept demonstrator that is composed of two Logitech C930e webcams and a laptop equipped with Nvidia GTX1650 MaxQ GPU and Intel i7-9750H CPU. The demonstrator is able to process the input camera feeds at 30 fps and the output can be visually analyzed with a dedicated 3D pose visualizer.
引用
收藏
页码:4553 / 4555
页数:3
相关论文
共 50 条
  • [11] Human Pose Estimation in Space and Time Using 3D CNN
    Grinciunaite, Agne
    Gudi, Amogh
    Tasli, Emrah
    den Uyl, Marten
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 32 - 39
  • [12] Multi-Task Deep Learning for Real-Time 3D Human Pose Estimation and Action Recognition
    Luvizon, Diogo C.
    Picard, David
    Tabia, Hedi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) : 2752 - 2764
  • [13] Multi-Person 3D Pose Estimation in Mobile Edge Computing Devices for Real-Time Applications
    Hossain, Md. Imtiaz
    Akhter, Sharmen
    Hossain, Md. Delowar
    Hong, Choong Seon
    Huh, Eui-Nam
    [J]. 2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 673 - 677
  • [14] Real-time upper body detection and 3D pose estimation in monoscopic images
    Micilotta, Antonio S.
    Ong, Eng-Jon
    Bowden, Richard
    [J]. COMPUTER VISION - ECCV 2006, PT 3, PROCEEDINGS, 2006, 3953 : 139 - 150
  • [15] Real-time head tracking and 3D pose estimation from range data
    Malassiotis, S
    Strintzis, MG
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 859 - 862
  • [16] FLK: A filter with learned kinematics for real-time 3D human pose estimation
    Martini, Enrico
    Boldo, Michele
    Bombieri, Nicola
    [J]. SIGNAL PROCESSING, 2024, 224
  • [17] Real-time 3D human pose estimation without skeletal a priori structures
    Bai, Guihu
    Luo, Yanmin
    Pan, Xueliang
    Wang, Jia
    Guo, Jing-Ming
    [J]. IMAGE AND VISION COMPUTING, 2023, 132
  • [18] REAL-TIME 3D HEAD POSE ESTIMATION USING BOTH GEOMETRY AND LEARNING
    Raytchev, Bisser
    Kimura, Yusuke
    Yoda, Ikushi
    Sakaue, Katsuhiko
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1525 - 1528
  • [19] Faster VoxelPose: Real-time 3D Human Pose Estimation by Orthographic Projection
    Ye, Hang
    Zhu, Wentao
    Wang, Chunyu
    Wu, Rujie
    Wang, Yizhou
    [J]. COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 142 - 159
  • [20] Achieving Hard Real-Time Capability for 3D Human Pose Estimation Systems
    Schlosser, Patrick
    Ledermann, Christoph
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 3772 - 3778