Folding-upon-Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes

被引:31
|
作者
Farag, Nada [1 ]
Mattossovich, Rosanna [2 ]
Merlo, Rosa [2 ]
Nierzwicki, Lukasz [3 ]
Palermo, Giulia [3 ,4 ]
Porchetta, Alessandro [1 ]
Perugino, Giuseppe [2 ]
Ricci, Francesco [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Chem, Via Ric Sci, I-00133 Rome, Italy
[2] Natl Res Council Italy, Inst Biosci & BioResources, Via Pietro Castellino 111, I-80131 Naples, Italy
[3] Univ Calif Riverside, Dept Bioengn, 900 Univ Ave, Riverside, CA 52512 USA
[4] Univ Calif Riverside, Dept Chem, 900 Univ Ave, Riverside, CA 52512 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
conformational change mechanism; DNA nanoswitches; DNA nanotechnology; DNA repair enzymes; triplex DNA; TEMOZOLOMIDE; SWITCHES; DAMAGE; O-6-BENZYLGUANINE; ALKYLTRANSFERASE; INACTIVATION; ANTIBODIES; PROTEINS; TRIAL; MGMT;
D O I
10.1002/anie.202016223
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a new class of DNA-based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding-upon-repair DNA nanoswitches are synthetic DNA sequences containing O-6-methyl-guanine (O-6-MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of the O-6-MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding-upon-repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors.
引用
收藏
页码:7283 / 7289
页数:7
相关论文
共 50 条
  • [21] Investigating the role of DNA repair enzymes in DNA replication and recombination
    Speed, Clayton
    Wiese, Claudia
    Parplys, Ann
    Hatherill, J. Robert
    FASEB JOURNAL, 2014, 28 (01):
  • [22] ACTIVITY BLOTTING METHOD FOR DETECTING DNA-MODIFYING (REPAIR) ENZYMES
    AKIYAMA, K
    SEKI, S
    WATANABE, S
    TSUTSUI, K
    MITSUI, Y
    TAKATORI, K
    YAMAMOTO, S
    JOURNAL OF CELLULAR BIOCHEMISTRY, 1995, : 278 - 278
  • [23] Electrically monitoring DNA repair by photolyase
    DeRosa, MC
    Sancar, A
    Barton, JK
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) : 10788 - 10792
  • [24] "Active" photoprotection: sunscreens with DNA repair enzymes
    Megna, Matteo
    Lembo, Serena
    Balato, Nicola
    Monfrecola, Giuseppe
    GIORNALE ITALIANO DI DERMATOLOGIA E VENEREOLOGIA, 2017, 152 (03): : 302 - 307
  • [25] Modes of action of DNA repair enzymes.
    Eriksson, LA
    Durbeej, B
    Llano, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U394 - U394
  • [26] Insulin regulates the expression of DNA repair enzymes
    Perfetti, R
    DIABETOLOGIA, 1998, 41 : A172 - A172
  • [27] DNA Repair Enzymes as Promising Targets in Oncotherapy
    A. L. Zakharenko
    N. A. Lebedeva
    O. I. Lavrik
    Russian Journal of Bioorganic Chemistry, 2018, 44 : 1 - 18
  • [28] DNA Repair Enzymes as Promising Targets in Oncotherapy
    Zakharenko, A. L.
    Lebedeva, N. A.
    Lavrik, O. I.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2018, 44 (01) : 1 - 18
  • [29] Targeting DNA repair enzymes to the mitochondria.
    LeDoux, SP
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2004, 44 (03) : 212 - 212
  • [30] improved photoaging with topical DNA repair enzymes
    Draelos, Zoe
    Yarosh, Daniel
    Lang, Gudrun
    Smiles, Kenneth
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2009, 60 (03) : AB2 - AB2