Arthur packets for G2 and perverse sheaves on cubics

被引:1
|
作者
Cunningham, Clifton [1 ]
Fiori, Andrew [2 ]
Zhang, Qing [3 ]
机构
[1] Univ Calgary, Dept Math & Stat, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Univ Lethbridge, Dept Math & Stat, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
Arthur packets; Exceptional groups; Admissible representations; UNIPOTENT REPRESENTATIONS; CHEVALLEY-GROUPS; FORMAL DEGREES;
D O I
10.1016/j.aim.2021.108074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper begins the project of defining Arthur packets of all unipotent representations for the p-adic exceptional group G(2). Here we treat the most interesting case by defining and computing Arthur packets with component group S-3. We also show that the distributions attached to these packets are stable, subject to a hypothesis. This is done using a self-contained microlocal analysis of simple equivariant perverse sheaves on the moduli space of homogeneous cubics in two variables. We treat all other unipotent representations of p-adic G(2) in forthcoming work. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
引用
收藏
页数:74
相关论文
共 50 条
  • [31] 商界G2
    李岷
    [J]. 中国企业家, 2009, (22) : 9 - 9
  • [32] New geometric presentations for Aut G2(3) and G2(3)
    Hoffman, Corneliu
    Shpectorov, Sergey
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) : 813 - 826
  • [33] Core electronic correlation modifications to G2 and G2(QCI) theories
    Su, KH
    Wei, J
    Hu, XL
    Yue, H
    Lü, L
    Wang, YB
    Wen, ZY
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2000, 16 (11) : 972 - 980
  • [34] The G20 and the G2
    Lin Hongyu the Department of International Politics at theUniversity of International Relations
    [J]. Contemporary International Relations, 2012, 22 (02) : 49 - 55
  • [35] The Exceptional Compact Symmetric Spaces G2 and G2/SO(4) as Tubes
    László Verhóczki
    [J]. Monatshefte für Mathematik, 2004, 141 : 323 - 335
  • [36] G2 checkpoint control and G2 chromosomal radiosensitivity in cancer survivors and their families
    Cadwell, Kevin K.
    Curwen, Gillian B.
    Tawn, E. Janet
    Winther, Jeanette F.
    Boice, John D., Jr.
    [J]. MUTAGENESIS, 2011, 26 (02) : 291 - 294
  • [37] The exceptional compact symmetric spaces G2 and G2/SO(4) as tubes
    Verhóczki, L
    [J]. MONATSHEFTE FUR MATHEMATIK, 2004, 141 (04): : 323 - 335
  • [38] A doubling integral for G2
    David Ginzburg
    Joseph Hundley
    [J]. Israel Journal of Mathematics, 2015, 207 : 835 - 879
  • [39] Generalised G2–Manifolds
    Frederik Witt
    [J]. Communications in Mathematical Physics, 2006, 265 : 275 - 303
  • [40] The g2 Structure Function
    Slifer, K.
    [J]. SPIN PHYSICS, 2009, 1149 : 130 - 139