Automatic Calibration of a LiDAR-Camera System Based on Instance Segmentation

被引:3
|
作者
Rotter, Pawel [1 ]
Klemiato, Maciej [1 ]
Skruch, Pawel [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Automat Control & Robot, Al A Mickiewicza 30, PL-30059 Krakow, Poland
关键词
LiDAR camera calibration; instance segmentation; Mask-RCNN; autonomous driving; KITTI dataset;
D O I
10.3390/rs14112531
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this article, we propose a method for automatic calibration of a LiDAR-camera system, which can be used in autonomous cars. This approach does not require any calibration pattern, as calibration is only based on real traffic scenes observed by sensors; the results of camera image segmentation are compared with scanning LiDAR depth data. The proposed algorithm superimposes the edges of objects segmented by the Mask-RCNN network with depth discontinuities. The method can run in the background during driving, and it can automatically detect decalibration and correct corresponding rotation matrices in an online and near real-time mode. Experiments on the KITTI dataset demonstrated that, for input data of moderate quality, the algorithm could calculate and correct rotation matrices with an average accuracy of 0.23 degrees.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [21] Channel Attention in LiDAR-camera Fusion for Lane Line Segmentation
    Zhang, Xinyu
    Li, Zhiwei
    Gao, Xin
    Jin, Dafeng
    Li, Jun
    PATTERN RECOGNITION, 2021, 118
  • [22] Survey of Extrinsic Calibration on LiDAR-Camera System for Intelligent Vehicle: Challenges, Approaches, and Trends
    An, Pei
    Ding, Junfeng
    Quan, Siwen
    Yang, Jiaqi
    Yang, You
    Liu, Qiong
    Ma, Jie
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 15342 - 15366
  • [23] CFNet: LiDAR-Camera Registration Using Calibration Flow Network
    Lv, Xudong
    Wang, Shuo
    Ye, Dong
    SENSORS, 2021, 21 (23)
  • [24] LiDAR-Camera Calibration Under Arbitrary Configurations: Observability and Methods
    Fu, Bo
    Wang, Yue
    Ding, Xiaqing
    Jiao, Yanmei
    Tang, Li
    Xiong, Rong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (06) : 3089 - 3102
  • [25] Accurate Calibration of LiDAR-Camera Systems using Ordinary Boxes
    Pusztai, Zoltan
    Hajder, Levente
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 394 - 402
  • [26] LiDAR-camera system extrinsic calibration by establishing virtual point correspondences from pseudo calibration objects
    An, Pei
    Gao, Yingshuo
    Ma, Tao
    Yu, Kun
    Fang, Bin
    Zhang, Jun
    Ma, Jie
    OPTICS EXPRESS, 2020, 28 (12): : 18261 - 18282
  • [27] Lidar-Camera Semi-Supervised Learning for Semantic Segmentation
    Caltagirone, Luca
    Bellone, Mauro
    Svensson, Lennart
    Wahde, Mattias
    Sell, Raivo
    SENSORS, 2021, 21 (14)
  • [28] General, Single-shot, Target-less, and Automatic LiDAR-Camera Extrinsic Calibration Toolbox
    Koide, Kenji
    Oishi, Shuji
    Yokozuka, Masashi
    Banno, Atsuhiko
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 11301 - 11307
  • [29] LiDAR-camera calibration method based on ranging statistical characteristics and improved RANSAC algorithm
    Xu, Xiaobin
    Zhang, Lei
    Yang, Jian
    Liu, Cong
    Xiong, Yiyang
    Luo, Minzhou
    Tan, Zhiying
    Liu, Bo
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 141
  • [30] NetCalib: A Novel Approach for LiDAR-Camera Auto-calibration Based on Deep Learning
    Wu, Shan
    Hadachi, Amnir
    Vivet, Damien
    Prabhakar, Yadu
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6648 - 6655