Automatic Calibration of a LiDAR-Camera System Based on Instance Segmentation

被引:3
|
作者
Rotter, Pawel [1 ]
Klemiato, Maciej [1 ]
Skruch, Pawel [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Automat Control & Robot, Al A Mickiewicza 30, PL-30059 Krakow, Poland
关键词
LiDAR camera calibration; instance segmentation; Mask-RCNN; autonomous driving; KITTI dataset;
D O I
10.3390/rs14112531
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this article, we propose a method for automatic calibration of a LiDAR-camera system, which can be used in autonomous cars. This approach does not require any calibration pattern, as calibration is only based on real traffic scenes observed by sensors; the results of camera image segmentation are compared with scanning LiDAR depth data. The proposed algorithm superimposes the edges of objects segmented by the Mask-RCNN network with depth discontinuities. The method can run in the background during driving, and it can automatically detect decalibration and correct corresponding rotation matrices in an online and near real-time mode. Experiments on the KITTI dataset demonstrated that, for input data of moderate quality, the algorithm could calculate and correct rotation matrices with an average accuracy of 0.23 degrees.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Automatic Targetless Calibration for LiDAR and Camera Based on Instance Segmentation
    Sun, Chao
    Wei, Zhijie
    Huang, Wenyi
    Liu, Qianfei
    Wang, Bo
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) : 981 - 988
  • [2] Automatic targetless LiDAR-camera calibration: a survey
    Li, Xingchen
    Xiao, Yuxuan
    Wang, Beibei
    Ren, Haojie
    Zhang, Yanyong
    Ji, Jianmin
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 9949 - 9987
  • [3] LiDAR-Camera System Automatic Extrinsic Calibration in Rail Transit
    Wu, Qian
    Zhang, Jin
    Sheng, Jie
    Wu, Cheng
    Yuan, Hao
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3380 - 3385
  • [4] LiDAR-camera Calibration based on the Characteristics of LiDAR Sensors
    Jeong, Sunjae
    Kim, Soohwan
    Kim, Jaeseung
    Kim, Minkyoung
    [J]. Journal of Institute of Control, Robotics and Systems, 2024, 30 (05) : 524 - 530
  • [5] ACLC: Automatic Calibration for Nonrepetitive Scanning LiDAR-Camera System Based on Point Cloud Noise Optimization
    Cui, Jiahe
    Niu, Jianwei
    He, Yunxiang
    Liu, Dian
    Ouyang, Zhenchao
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [6] Automatic and Targetless LiDAR-Camera Extrinsic Calibration Using Edge Alignment
    Yin, Jun
    Yan, Fei
    Liu, Yisha
    Zhuang, Yan
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (17) : 19871 - 19880
  • [7] Automatic LiDAR-Camera Extrinsic Calibration Using Pseudoimage and Multiple Targets
    Dong, Yanchao
    Liu, Yuhao
    Li, Lingxiao
    Deng, Haiyang
    Tang, Jie
    Li, Jinsong
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [8] Automatic LiDAR-Camera Calibration of Extrinsic Parameters Using a Spherical Target
    Toth, Tekla
    Pusztai, Zoltan
    Hajder, Levente
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 8580 - 8586
  • [9] Accurate fruit localisation using high resolution LiDAR-camera fusion and instance segmentation
    Kang, Hanwen
    Wang, Xing
    Chen, Chao
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 203
  • [10] Joint Camera Intrinsic and LiDAR-Camera Extrinsic Calibration
    Yan, Guohang
    He, Feiyu
    Shi, Chunlei
    Wei, Pengjin
    Cai, Xinyu
    Li, Yikang
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 11446 - 11452