Extrapolating Forest Canopy Fuel Properties in the California Rim Fire by Combining Airborne LiDAR and Landsat OLI Data

被引:42
|
作者
Garcia, Mariano [1 ,2 ]
Saatchi, Sassan [2 ]
Casas, Angeles [3 ]
Koltunov, Alexander [4 ]
Ustin, Susan L. [4 ]
Ramirez, Carlos [5 ]
Balzter, Heiko [1 ,6 ]
机构
[1] Univ Leicester, Ctr Landscape & Climate Res, Dept Geog, Leicester LE1 7RH, Leics, England
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] Climate Corp, 201 Third St,Suite 1100, San Francisco, CA 94103 USA
[4] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing CSTARS, Davis, CA 95618 USA
[5] US Forest Serv, USDA, Reg Remote Sensing Lab 5, Vallejo, CA 95652 USA
[6] Univ Leicester, Natl Ctr Earth Observat, Leicester LE1 7RH, Leics, England
来源
REMOTE SENSING | 2017年 / 9卷 / 04期
基金
美国国家科学基金会; 英国自然环境研究理事会;
关键词
LiDAR; Landsat OLI; data integration; canopy fuel load; canopy cover; canopy bulk density; megafires;
D O I
10.3390/rs9040394
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate, spatially explicit information about forest canopy fuel properties is essential for ecosystem management strategies for reducing the severity of forest fires. Airborne LiDAR technology has demonstrated its ability to accurately map canopy fuels. However, its geographical and temporal coverage is limited, thus making it difficult to characterize fuel properties over large regions before catastrophic events occur. This study presents a two-step methodology for integrating post-fire airborne LiDAR and pre-fire Landsat OLI (Operational Land Imager) data to estimate important pre-fire canopy fuel properties for crown fire spread, namely canopy fuel load (CFL), canopy cover (CC), and canopy bulk density (CBD). This study focused on a fire prone area affected by the large 2013 Rim fire in the Sierra Nevada Mountains, California, USA. First, LiDAR data was used to estimate CFL, CC, and CBD across an unburned 2 km buffer with similar structural characteristics to the burned area. Second, the LiDAR-based canopy fuel properties were extrapolated over the whole area using Landsat OLI data, which yielded an R-2 of 0.8, 0.79, and 0.64 and RMSE of 3.76 Mg.ha(-1), 0.09, and 0.02 kg.m(-3) for CFL, CC, and CBD, respectively. The uncertainty of the estimates was estimated for each pixel using a bootstrapping approach, and the 95% confidence intervals are reported. The proposed methodology provides a detailed spatial estimation of forest canopy fuel properties along with their uncertainty that can be readily integrated into fire behavior and fire effects models. The methodology could be also integrated into the LANDFIRE program to improve the information on canopy fuels.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm
    Ahmed, Oumer S.
    Franklin, Steven E.
    Wulder, Michael A.
    White, Joanne C.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 101 : 89 - 101
  • [32] Combining Trunk Detection With Canopy Segmentation to Delineate Single Deciduous Trees Using Airborne LiDAR Data
    Wang, Xiaohu
    Zhang, Yizhuo
    Luo, Ze
    IEEE ACCESS, 2020, 8 : 99783 - 99796
  • [33] Modelling canopy fuel and forest stand variables and characterizing the influence of thinning in the stand structure using airborne LiDAR
    Hevia, A.
    Alvarez-Gonzalez, J. G.
    Ruiz-Fernandez, E.
    Prendes, C.
    Ruiz-Gonzalez, A. D.
    Majada, J.
    Gonzalez-Ferreiro, E.
    REVISTA DE TELEDETECCION, 2016, (45): : 41 - 55
  • [34] Forest Canopy Height Estimation Combining Dual-Polarization PolSAR and Spaceborne LiDAR Data
    Tong, Yao
    Liu, Zhiwei
    Fu, Haiqiang
    Zhu, Jianjun
    Zhao, Rong
    Xie, Yanzhou
    Hu, Huacan
    Li, Nan
    Fu, Shujuan
    FORESTS, 2024, 15 (09):
  • [35] Automated characterization of forest canopy vertical layering for predicting forest inventory attributes by layer using airborne LiDAR data
    Penner, Margaret
    White, Joanne C.
    Woods, Murray E.
    FORESTRY, 2023, : 59 - 75
  • [36] Estimation of Forest Above-Ground Biomass in the Study Area of Greater Khingan Ecological Station with Integration of Airborne LiDAR, Landsat 8 OLI, and Hyperspectral Remote Sensing Data
    Wang, Lu
    Ju, Yilin
    Ji, Yongjie
    Marino, Armando
    Zhang, Wangfei
    Jing, Qian
    FORESTS, 2024, 15 (11):
  • [37] Predicting Southeastern Forest Canopy Heights and Fire Fuel Models using GLAS Data
    Ashworth, Andrew
    Evans, David L.
    Cooke, William H.
    Londo, Andrew
    Collins, Curtis
    Neuenschwander, Amy
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2010, 76 (08): : 915 - 922
  • [38] Mapping Boreal Forest Species and Canopy Height using Airborne SAR and Lidar Data in Interior Alaska
    Zhao, Yuhuan
    Chen, Richard H.
    Bakian-Dogaheh, Kazem
    Whitcomb, Jane
    Yi, Yonghong
    Kimball, John S.
    Moghaddam, Mahta
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4955 - 4958
  • [39] Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests
    Phua, Mui-How
    Johari, Shazrul Azwan
    Wong, Ong Cieh
    Ioki, Keiko
    Mahali, Maznah
    Nilus, Reuben
    Coomes, David A.
    Maycock, Colin R.
    Hashim, Mazlan
    FOREST ECOLOGY AND MANAGEMENT, 2017, 406 : 163 - 171
  • [40] Forest Aboveground Biomass Prediction by Integrating Terrestrial Laser Scanning Data, Landsat 8 OLI-Derived Forest Canopy Density and Spectral Indices
    Bhandari, Shes Kanta
    Nandy, Subrata
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (04) : 813 - 824