Extrapolating Forest Canopy Fuel Properties in the California Rim Fire by Combining Airborne LiDAR and Landsat OLI Data

被引:42
|
作者
Garcia, Mariano [1 ,2 ]
Saatchi, Sassan [2 ]
Casas, Angeles [3 ]
Koltunov, Alexander [4 ]
Ustin, Susan L. [4 ]
Ramirez, Carlos [5 ]
Balzter, Heiko [1 ,6 ]
机构
[1] Univ Leicester, Ctr Landscape & Climate Res, Dept Geog, Leicester LE1 7RH, Leics, England
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] Climate Corp, 201 Third St,Suite 1100, San Francisco, CA 94103 USA
[4] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing CSTARS, Davis, CA 95618 USA
[5] US Forest Serv, USDA, Reg Remote Sensing Lab 5, Vallejo, CA 95652 USA
[6] Univ Leicester, Natl Ctr Earth Observat, Leicester LE1 7RH, Leics, England
来源
REMOTE SENSING | 2017年 / 9卷 / 04期
基金
美国国家科学基金会; 英国自然环境研究理事会;
关键词
LiDAR; Landsat OLI; data integration; canopy fuel load; canopy cover; canopy bulk density; megafires;
D O I
10.3390/rs9040394
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate, spatially explicit information about forest canopy fuel properties is essential for ecosystem management strategies for reducing the severity of forest fires. Airborne LiDAR technology has demonstrated its ability to accurately map canopy fuels. However, its geographical and temporal coverage is limited, thus making it difficult to characterize fuel properties over large regions before catastrophic events occur. This study presents a two-step methodology for integrating post-fire airborne LiDAR and pre-fire Landsat OLI (Operational Land Imager) data to estimate important pre-fire canopy fuel properties for crown fire spread, namely canopy fuel load (CFL), canopy cover (CC), and canopy bulk density (CBD). This study focused on a fire prone area affected by the large 2013 Rim fire in the Sierra Nevada Mountains, California, USA. First, LiDAR data was used to estimate CFL, CC, and CBD across an unburned 2 km buffer with similar structural characteristics to the burned area. Second, the LiDAR-based canopy fuel properties were extrapolated over the whole area using Landsat OLI data, which yielded an R-2 of 0.8, 0.79, and 0.64 and RMSE of 3.76 Mg.ha(-1), 0.09, and 0.02 kg.m(-3) for CFL, CC, and CBD, respectively. The uncertainty of the estimates was estimated for each pixel using a bootstrapping approach, and the 95% confidence intervals are reported. The proposed methodology provides a detailed spatial estimation of forest canopy fuel properties along with their uncertainty that can be readily integrated into fire behavior and fire effects models. The methodology could be also integrated into the LANDFIRE program to improve the information on canopy fuels.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Extrapolating forest canopy cover by combining airborne LiDAR and Landsat data: The case of the Yeste Fire (Spain)
    Viana-Soto, Alba
    Garcia, Mariano
    Aguado, Inmaculada
    Salas, Javier
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS XII, 2021, 11863
  • [2] Quantifying biomass consumption and carbon release from the California Rim fire by integrating airborne LiDAR and Landsat OLI data
    Garcia, Mariano
    Saatchi, Sassan
    Casas, Angeles
    Koltunov, Alexander
    Ustin, Susan
    Ramirez, Carlos
    Garcia-Gutierrez, Jorge
    Balzter, Heiko
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2017, 122 (02) : 340 - 353
  • [3] Canopy cover estimation of agroforestry based on airborne LiDAR and Landsat 8 OLI
    Rudianto, Yoga
    Prasetyo, Lilik B.
    Setiawan, Yudi
    Hudjimartsu, Sahid
    SIXTH INTERNATIONAL SYMPOSIUM ON LAPAN-IPB SATELLITE (LISAT 2019), 2019, 11372
  • [4] USING AIRBORNE LIDAR DATA FOR ASSESSMENT OF FOREST FIRE FUEL LOAD POTENTIAL
    Inan, M.
    Bilici, E.
    Akay, A. E.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 4-4 (W4): : 255 - 258
  • [5] Canopy Cover Estimation in Lowland Forest in South Sumatera, Using LiDAR and Landsat 8 OLI imagery
    Saleh, Muhammad Buce
    Dewi, Rosima Wati
    Prasetyo, Lilik Budi
    Santi, Nitya Ade
    JURNAL MANAJEMEN HUTAN TROPIKA, 2021, 27 (01): : 50 - 58
  • [6] Democratic Republic of the Congo Tropical Forest Canopy Height and Aboveground Biomass Estimation with Landsat-8 Operational Land Imager (OLI) and Airborne LiDAR Data: The Effect of Seasonal Landsat Image Selection
    Kashongwe, Herve B.
    Roy, David P.
    Bwangoy, Jean Robert B.
    REMOTE SENSING, 2020, 12 (09)
  • [7] Estimating forest canopy fuel parameters using LIDAR data
    Andersen, HE
    McGaughey, RJ
    Reutebuch, SE
    REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) : 441 - 449
  • [8] Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park
    Kane, Van R.
    North, Malcolm P.
    Lutz, James A.
    Churchill, Derek J.
    Roberts, Susan L.
    Smith, Douglas F.
    McGaughey, Robert J.
    Kane, Jonathan T.
    Brooks, Matthew L.
    REMOTE SENSING OF ENVIRONMENT, 2014, 151 : 89 - 101
  • [9] Interpretation of forest disturbance using a time series of Landsat imagery and canopy structure from airborne lidar
    Ahmed, Oumer S.
    Franklin, Steven E.
    Wulder, Michael A.
    CANADIAN JOURNAL OF REMOTE SENSING, 2014, 39 (06) : 521 - 542
  • [10] Forest canopy height estimation based on ICESat/GLAS data by airborne lidar
    Hu K.
    Liu Q.
    Pang Y.
    Li M.
    Mu X.
    Liu, Qingwang (liuqw@caf.ac.cn), 1600, Chinese Society of Agricultural Engineering (33): : 88 - 95