Numerical simulation of nonholonomic rigid-body systems

被引:1
|
作者
Andreev, Yu. M. [1 ]
Morachkovskii, O. K. [1 ]
机构
[1] Natl Tech Univ, Kharkov Polytech Inst, Kharkov, Ukraine
关键词
computer algebra system; equations of motion for systems of rigid bodies; holonomic and nonholonomic systems; D'Alembert-Lagrange principle;
D O I
10.1007/s10778-006-0176-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper proposes computer algebra system (CAS) algorithms for computer-assisted derivation of the equations of motion for systems of rigid bodies with holonomic and nonholonomic constraints that are linear with respect to the generalized velocities. The main advantages of using the D'Alembert-Lagrange principle for the CSA-based derivation of the equations of motion for nonholonomic systems of rigid bodies are demonstrated. Among them are universality, algorithmizability, computational efficiency, and simplicity of deriving equations for holonomic and nonholonomic systems in terms of generalized coordinates or pseudo-velocities.
引用
收藏
页码:1052 / 1060
页数:9
相关论文
共 50 条
  • [21] COMPARISON OF METHODS FOR DEVELOPING THE DYNAMICS OF RIGID-BODY SYSTEMS
    JU, MS
    MANSOUR, JM
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1989, 8 (06): : 19 - 27
  • [22] The stiffness matrix in elastically articulated rigid-body systems
    Koevecses, J.
    Angeles, J.
    [J]. MULTIBODY SYSTEM DYNAMICS, 2007, 18 (02) : 169 - 184
  • [23] Generalizations of classical integrable nonholonomic rigid body systems
    Dragovic, V
    Gajic, B
    Jovanovic, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (49): : 9861 - 9869
  • [24] ON NUMERICAL INVESTIGATION OF RIGID-BODY SPACE PENETRATION INTO ELASTOPLASTIC PLATE
    BOGDANOV, VI
    ZVJAGIN, AV
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1993, (04): : 62 - 68
  • [25] The stiffness matrix in elastically articulated rigid-body systems
    J. Kövecses
    J. Angeles
    [J]. Multibody System Dynamics, 2007, 18 : 169 - 184
  • [26] RIGID-BODY VIBRATIONS IN NON-ORTHOGONAL SYSTEMS
    HIRSHFELD, FL
    RABINOVICH, D
    [J]. ACTA CRYSTALLOGRAPHICA, 1966, 20 : 146 - +
  • [27] A skew-symmetric property of rigid-body systems
    Lian, KY
    Wang, LS
    Fu, LC
    [J]. SYSTEMS & CONTROL LETTERS, 1998, 33 (03) : 187 - 197
  • [28] Simulation of water clusters with rigid-body diffusion Monte Carlo
    Clary, DC
    Gregory, JK
    [J]. RECENT THEORETICAL AND EXPERIMENTAL ADVANCES IN HYDROGEN BONDED CLUSTERS, 2000, 561 : 187 - 199
  • [29] Hybrid dynamic simulation of rigid-body contact with Coulomb friction
    Son, W
    Trinkle, JC
    Amato, NM
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 1376 - 1381
  • [30] MEASURING RIGID-BODY MOTION
    PAGE, R
    [J]. ELECTRO-OPTICS, 1983, 15 (04): : 24 - 29