A combinatorial approach to the 2D-Hermite and 2D-Laguerre polynomials

被引:13
|
作者
Ismail, Mourad E. H. [1 ,2 ]
Zeng, Jiang [3 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] King Saud Univ, Riyadh, Saudi Arabia
[3] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
2D-Hermite polynomials; 2D-Laguerre polynomials; Kibble-Slepian formula; Linearization coefficients; Elementary symmetric functions; Inequalities; Positivity; Shifted Laguerre polynomials; LAGUERRE;
D O I
10.1016/j.aam.2014.12.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first author has recently proved a Kibble-Slepian type formula for the 2D-Hermite polynomials {H-m,H- n(z, (z) over bar)} which extends the Poisson kernel for these polynomials. We provide a combinatorial proof of a closely related formula. The combinatorial structures involved are the so-called m-involutionary l-graphs. They are enumerated in two different manners: first globally, then as the exponential of their connected components. We also give a combinatorial model for the 2D-Laguerre polynomials and study their linearization coefficients. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 88
页数:19
相关论文
共 50 条
  • [31] SOME GENERALIZATIONS OF LAGUERRE POLYNOMIALS .2.
    CHAK, AM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 317 - &
  • [32] PRODUCT OF 2 LAGUERRE POLYNOMIALS - PRELIMINARY REPORT
    SRIVASTA.HM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 420 - &
  • [33] d-orthogonality of Little q-Laguerre type polynomials
    Ben Cheikh, Y.
    Lamiri, I.
    Ouni, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (01) : 74 - 84
  • [34] 2 RECURRENCE RELATIONS FOR HERMITE BASIS POLYNOMIALS
    CAVENDISH, JC
    MEYER, WW
    SHARMA, A
    MATHER, KK
    SIAM REVIEW, 1979, 21 (01) : 143 - 144
  • [36] RESULTS INVOLVING HERMITE POLYNOMIALS OF 2 VARIABLES
    GUPTA, SL
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1970, 40 : 232 - &
  • [37] On the computation of the GCD of 2-D polynomials
    Tzekis, Panagiotis
    Karampetakis, Nicholas P.
    Terzidis, Haralambos K.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (04) : 463 - 470
  • [38] ON THE APPROXIMATE FACTORIZATION OF 2-D POLYNOMIALS
    ZOU, MY
    UNBEHAUEN, R
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (04): : 577 - 579
  • [39] Rotation of 2D orthogonal polynomials
    Yang, Bo
    Flusser, Jan
    Kautsky, Jaroslav
    PATTERN RECOGNITION LETTERS, 2018, 102 : 44 - 49
  • [40] d-Orthogonal polynomials and su(2)
    Genest, Vincent X.
    Vinet, Luc
    Zhedanov, Alexei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (02) : 472 - 487