Adaptive likelihood estimator of conditional variance function

被引:1
|
作者
Avramidis, Panagiotis [1 ]
机构
[1] ALBA Grad Business Sch, Xenias 6-8, Athens, Greece
关键词
62G08; 62G20; 62G05; kernel smoothing; likelihood function; adaptive estimate; nonparametric conditional variance; LOCAL POLYNOMIAL ESTIMATION; LEAST-SQUARES REGRESSION; NONPARAMETRIC-ESTIMATION; TIME-SERIES; MODELS; VOLATILITY; KERNEL; HETEROSKEDASTICITY; EFFICIENCIES; CONVERGENCE;
D O I
10.1080/10485252.2015.1122189
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Modelling volatility in the form of conditional variance function has been a popular method mainly due to its application in financial risk management. Among others, we distinguish the parametric GARCH models and the nonparametric local polynomial approximation using weighted least squares or gaussian likelihood function. We introduce an alternative likelihood estimate of conditional variance and we show that substitution of the error density with its estimate yields similar asymptotic properties, that is, the proposed estimate is adaptive to the error distribution. Theoretical comparison with existing estimates reveals substantial gains in efficiency, especially if error distribution has fatter tails than Gaussian distribution. Simulated data confirm the theoretical findings while an empirical example demonstrates the gains of the proposed estimate.
引用
收藏
页码:132 / 151
页数:20
相关论文
共 50 条
  • [31] Inadmissibility of the maximum likelihood estimator of normal covariance matrices with the lattice conditional independence
    Konno, Y
    JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 79 (01) : 33 - 51
  • [32] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Marazzi, Alfio
    Valdora, Marina
    Yohai, Victor
    Amiguet, Michael
    TEST, 2019, 28 (01) : 223 - 241
  • [33] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Alfio Marazzi
    Marina Valdora
    Victor Yohai
    Michael Amiguet
    TEST, 2019, 28 : 223 - 241
  • [34] Wavelet-based nonparametric estimator of the variance function
    Pan, Zuohong
    Wang, Xiaodi
    Computational Economics, 2000, 15 (1-2) : 79 - 87
  • [35] Empirical Sandwich Variance Estimator for Iterated Conditional Expectation g-Computation
    Zivich, Paul N.
    Ross, Rachael K.
    Shook-Sa, Bonnie E.
    Cole, Stephen R.
    Edwards, Jessie K.
    STATISTICS IN MEDICINE, 2024, 43 (29) : 5562 - 5572
  • [36] Adaptive online variance estimation in particle filters: the ALVar estimator
    Alessandro Mastrototaro
    Jimmy Olsson
    Statistics and Computing, 2023, 33
  • [37] A new partial robust adaptive modified maximum likelihood estimator
    Acitas, Sukru
    Filzmoser, Peter
    Senoglu, Birdal
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 204
  • [38] Adaptive online variance estimation in particle filters: the ALVar estimator
    Mastrototaro, Alessandro
    Olsson, Jimmy
    STATISTICS AND COMPUTING, 2023, 33 (04)
  • [39] A type of restricted maximum likelihood estimator of variance components in generalised linear mixed models
    Liao, JG
    Lipsitz, SR
    BIOMETRIKA, 2002, 89 (02) : 401 - 409
  • [40] A NOTE ON THE BIAS AND VARIANCE OF THE MAXIMUM-LIKELIHOOD ESTIMATOR OF THE GROWTH-RATE PARAMETER
    RAO, ULG
    BIOMETRICAL JOURNAL, 1986, 28 (06) : 763 - 765