Kernelized Identification of Linear Parameter-Varying Models with Linear Fractional Representation

被引:0
|
作者
Mejari, Manas [1 ]
Piga, Dario [2 ]
Toth, Roland [3 ]
Bemporad, Alberto [4 ]
机构
[1] Univ Lille 1, Ctr Rech Informat Signal & Automat Lille, F-59651 Villeneuve Dascq, France
[2] USI, SUPSI, IDSIA Dalle Molle Inst Artificial Intelligence, CH-6928 Manno, Switzerland
[3] Eindhoven Univ Technol, Dept Elect Engn, Control Syst Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
[4] IMT Sch Adv Studies Lucca, I-55100 Lucca, Italy
基金
欧盟地平线“2020”;
关键词
LPV; SYSTEMS;
D O I
10.23919/ecc.2019.8796150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The article presents a method for the identification of Linear Parameter-Varying (LPV) models in a Linear Fractional Representation (LFR), which corresponds to a Linear Time-Invariant (LTI) model connected to a scheduling variable dependency via a feedback path. A two-stage identification approach is proposed. In the first stage, Kernelized Canonical Correlation Analysis (KCCA) is formulated to estimate the state sequence of the underlying LPV model. In the second stage, a non-linear least squares cost function is minimized by employing a coordinate descent algorithm to estimate latent variables characterizing the LFR and the unknown model matrices of the LTI block by using the state estimates obtained at the first stage. Here, it is assumed that the structure of the scheduling variable dependent block in the feedback path is fixed. For a special case of affine dependence of the model on the feedback block, it is shown that the optimization problem in the second stage reduces to ordinary least-squares followed by a singular value decomposition.
引用
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [21] Approximation of linear parameter-varying systems
    Wood, GD
    Goddard, PJ
    Glover, K
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 406 - 411
  • [22] Identification of State-space Linear Parameter-varying Models Using Artificial Neural Networks
    Bao, Yajie
    Velni, Javad Mohammadpour
    Basina, Aditya
    Shahbakhti, Mahdi
    IFAC PAPERSONLINE, 2020, 53 (02): : 5286 - 5291
  • [23] Identification of Linear Parameter-Varying Systems via IO and Subspace Identification - A Comparison
    Schulz, Erik
    Bussa, Ashish
    Werner, Herbert
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 7147 - 7152
  • [24] Identification of linear parameter-varying state-space models with application to helicopter rotor dynamics
    Verdult, V
    Lovera, M
    Verhaegen, M
    INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (13) : 1149 - 1159
  • [25] Identification of multivariable linear parameter-varying systems based on subspace techniques
    Verdult, V
    Verhaegen, M
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 1567 - 1572
  • [26] Linear parameter-varying system identification of an industrial ball screw setup
    Turk, Dora
    Singh, Taranjitsingh
    Swevers, Jan
    2018 IEEE 15TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2018, : 90 - 95
  • [27] A predictive envelope protection system using linear, parameter-varying models
    Krings M.
    Thielecke F.
    CEAS Aeronaut. J., 1 (95-108): : 95 - 108
  • [28] Improved Subspace Identification for Linear Parameter-Varying Systems by Recursive Estimation
    Buchholz, Michael
    Werner, Samuel
    AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (09) : 574 - 584
  • [29] Identification of Linear Parameter-Varying Systems Using B-splines
    Turk, Dora
    Jacobs, Laurens
    Singh, Taranjitsingh
    Decre, Wilm
    Swevers, Jan
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 3316 - 3321
  • [30] Identification of linear parameter-varying system with missing measurement data and outliers
    Chen, Xiang
    Wang, Xiaogang
    Liu, Fei
    JOURNAL OF THE FRANKLIN INSTITUTE, 2025, 362 (04)