Tunable and Energetically Robust PbS Nanoplatelets for Optoelectronic Applications

被引:35
|
作者
Li, Huashan [1 ]
Zhitomirsky, David [1 ]
Grossman, Jeffrey C. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
QUANTUM-DOT SOLIDS; SUB-BANDGAP STATES; SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; COLLOIDAL NANOPLATELETS; PHOTOVOLTAIC DEVICES; ELECTRONIC-STRUCTURE; ROOM-TEMPERATURE; QUASI-PARTICLE; CDSE;
D O I
10.1021/acs.chemmater.6b00167
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
PbS nanoplatelets (NPLs) are proposed as robust materials for novel optoelectronic devices. Compared to quantum dot assemblies, ab initio simulations are employed to show that such pseudo-two-dimensional systems may provide stronger absorption and higher carrier mobility due to the distinct wave function distributions, large electronic couplings, and small hopping barriers. More importantly, both energetic and spatial traps are absent in conditions far from charge balance, indicating an extraordinary robustness against off-stoichiometry as a result of surface homogeneity and sufficient cross-linking. Based on our findings, we present several types of optoelectronic device architectures spanning photovoltaics and photodetectors that could take advantage of the superior properties found in NPLs.
引用
收藏
页码:1888 / 1896
页数:9
相关论文
共 50 条
  • [31] Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells
    A. H. Fallahpour
    A. Gagliardi
    D. Gentilini
    A. Zampetti
    F. Santoni
    M. Auf der Maur
    A. Di Carlo
    Journal of Computational Electronics, 2014, 13 : 933 - 942
  • [32] Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications
    Wang, Yongjie
    Liu, Zeke
    Huo, Nengjie
    Li, Fei
    Gu, Mengfan
    Ling, Xufeng
    Zhang, Yannan
    Lu, Kunyuan
    Han, Lu
    Fang, Honghua
    Shulga, Artem G.
    Xue, Ye
    Zhou, Sijie
    Yang, Fan
    Tang, Xun
    Zheng, Jiawei
    Loi, Maria Antonietta
    Konstantatos, Gerasimos
    Ma, Wanli
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [33] Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells
    Fallahpour, A. H.
    Gagliardi, A.
    Gentilini, D.
    Zampetti, A.
    Santoni, F.
    Maur, M. Auf Der
    Di Carlo, A.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (04) : 933 - 942
  • [34] Robust Superhydrophobic Bridged Silsesquioxane Aerogels with Tunable Performances and Their Applications
    Wang, Zhen
    Wang, Dong
    Qian, Zhenchao
    Guo, Jing
    Dong, Haixia
    Zhao, Ning
    Xu, Jian
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) : 2016 - 2024
  • [35] An Optically Tunable Optoelectronic Oscillator
    Li, Wangzhe
    Yao, Jianping
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (18) : 2640 - 2645
  • [36] Tunable Attenuator based on commercial graphene nanoplatelets
    Yasir, Muhammad
    Savi, Patrizia
    2020 INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY (IWAT), 2020,
  • [37] Optoelectronic active element based on PbS/ZnSe heterostructure
    Khlyap, G
    EDMO 2001: INTERNATIONAL SYMPOSIUM ON ELECTRON DEVICES FOR MICROWAVE AND OPTOELECTRONIC APPLICATIONS, 2001, : 67 - 69
  • [38] A tunable optoelectronic oscillator based on a tunable microwave attenuator
    Wei, Zhihu
    Wang, Rong
    Pu, Tao
    Sun, Guodan
    Fang, Tao
    Zheng, Jilin
    OPTICAL FIBER TECHNOLOGY, 2013, 19 (05) : 383 - 386
  • [39] Color tunable ZnO nanorods by Eu and Tb co-doping for optoelectronic applications
    Pal, Partha P.
    Manam, J.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 116 (01): : 213 - 223
  • [40] Rapid Microwave Synthesis of Tunable Cadmium Selenide (CdSe) Quantum Dots for Optoelectronic Applications
    Thomas, Donovan
    Lee, Harold O., III
    Santiago, Kevin C.
    Pelzer, Marvin
    Kuti, Ayodeji
    Jenrette, Erin
    Bahoura, Messaoud
    JOURNAL OF NANOMATERIALS, 2020, 2020