Angular spectrum representation of the Bessel-Gauss beam and its approximation: A comparison with the localized approximation

被引:19
|
作者
Shen, Jianqi [1 ]
Wang, Ying [1 ]
Yu, Haitao [1 ]
Ambrosio, Leonardo Andre [2 ]
Gouesbet, Gerard [3 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, 516 Jungong Rd, Shanghai 200093, Peoples R China
[2] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
[3] Univ & INSA Rouen, Normandie Univ, CORIA,CNRS, UMR 6614, Campus Univ Madrillet, F-76800 St Etienne Rouvray, France
关键词
Angular spectrum representation; Localized approximation; Beam shape coefficient; Bessel-Gauss beam; LORENZ-MIE THEORY; ARBITRARY SHAPED BEAMS; RIGOROUS JUSTIFICATION; LIGHT-SCATTERING; VALIDITY; COEFFICIENTS; ORDER; DIFFRACTION; GENERATION; PROPAGATION;
D O I
10.1016/j.jqsrt.2022.108167
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The angular spectrum representation of the vector Bessel-Gauss beam is used for discussing the connection between the angular spectrum decomposition (ASD) method and the quadrature method of the generalized Lorenz-Mie theory (GLMT). Under the paraxial condition, the beam shape coefficients (BSCs) obtained in the ASD method can be approximated to the same expressions as those obtained in the localized approximation method. The validity of the approximate method for evaluating the BSCs is numerically studied, based on both the beam's angular spectrum and the off-axis distance. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Supercontinuum spectrum in IR Bessel-Gauss and Gauss pulsed beam filament under anomalous group velocity dispersion in fused silica
    Dokukina, A. E.
    Smetanina, E. O.
    Kompanets, V. O.
    Chekalin, S. V.
    Kandidov, V. P.
    [J]. INFRARED REMOTE SENSING AND INSTRUMENTATION XXII, 2014, 9219
  • [22] Bessel-Gauss beam enhancement cavities for high-intensity applications
    Putnam, William P.
    Schimpf, Damian N.
    Abram, Gilberto
    Kaertner, Franz X.
    [J]. OPTICS EXPRESS, 2012, 20 (22): : 24429 - 24443
  • [23] Quadratic Bessel-Gauss beams and the azimuthal angular spectra of Gaussian astigmatic beams
    Plachenov, Alexandr B.
    Chamorro-Posada, Pedro
    Kiselev, Aleksei P.
    [J]. Physical Review A, 2020, 102 (02):
  • [24] Quadratic Bessel-Gauss beams and the azimuthal angular spectra of Gaussian astigmatic beams
    Plachenov, Alexandr B.
    Chamorro-Posada, Pedro
    Kiselev, Aleksei P.
    [J]. PHYSICAL REVIEW A, 2020, 102 (02)
  • [25] Generation and self-healing of a radially polarized Bessel-Gauss beam
    Wu, Gaofeng
    Wang, Fei
    Cai, Yangjian
    [J]. PHYSICAL REVIEW A, 2014, 89 (04):
  • [26] Bessel-Gauss pulse as an appropriate mathematical model for optically realizable localized waves
    Reivelt, K
    Saari, P
    [J]. OPTICS LETTERS, 2004, 29 (11) : 1176 - 1178
  • [27] On the validity of localized approximation for an on-axis zeroth-order Bessel beam
    Gouesbet, Gerard
    Lock, J. A.
    Ambrosio, L. A.
    Wang, J. J.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 195 : 18 - 25
  • [28] COMPARISON OF THE PROPAGATION CHARACTERISTICS OF BESSEL, BESSEL-GAUSS, AND GAUSSIAN BEAMS DIFFRACTED BY A CIRCULAR APERTURE
    OVERFELT, PL
    KENNEY, CS
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1991, 8 (05): : 732 - 745
  • [29] Comparison between the Propagation Properties of Bessel-Gauss and Generalized Laguerre-Gauss Beams
    Sheppard, Colin J. R.
    Porras, Miguel A.
    [J]. PHOTONICS, 2023, 10 (09)
  • [30] Note on the asymptotic approximation of a double integral with an angular-spectrum representation
    Wang, F
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2005, 59 (04) : 258 - 261