Performance Analysis of Java']Java Virtual Machine for Machine Learning Workloads using Apache Spark

被引:0
|
作者
Hema, N. [1 ]
Srinivasa, K. G. [1 ]
Chidambaram, Saravanan [2 ]
Saraswat, Sandeep [2 ]
Saraswati, Sujoy [2 ]
Ramachandra, Ranganath [2 ]
Huttanagoudar, Jayashree B. [3 ]
机构
[1] MSRIT, Dept CSE, Bangalore 54, Karnataka, India
[2] Hewlett Packard Enterprise, Bangalore 560048, Karnataka, India
[3] RVCE, Dept CSE, Bangalore 59, Karnataka, India
关键词
Big data; Machine Learning (ML); Apache Spark; Hadoop; !text type='Java']Java[!/text] Virtual Machine (JVM);
D O I
10.1145/2980258.2982117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Now a day's data is growing very rapidly, where processing and analyzing data to get useful information is the main task. There are many big data processing tools and framework such as Hadoop, Hive, Cassandra etc. Spark is one of the fastest big data processing framework in cluster computation. Basic Idea is to analyze the performance of java virtual machine (JVM) [1], by characterizing java virtual machine using SparkBench benchmark on Apache Spark (TM) [2]. Java virtual machine is a core execution platform for spark application. When we run the spark application on java virtual machine, its behavior is affected, which needs to be monitored to analyze the JVM performance. Here we are considering Machine Learning workloads like K-Means, Matrix Factorization and Logistic Regression. Main goal here is to analyze the machine learning workloads end to end across the cluster, with respect to following parameters such as garbage collection, memory such as heap usage, CPU process time. Characterization of JVM is done with spark cluster setup and HDFS is used as storage with distributed Hadoop cluster setup.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Compilation scheduling for the Java']Java virtual machine
    Jiva, A
    Chun, R
    PLC '05: Proceedings of the 2005 International Conference on Programming Languages and Compilers, 2005, : 187 - 193
  • [22] Pipelined Java']Java Virtual Machine interpreters
    Hoogerbrugge, J
    Augusteijn, L
    COMPILER CONSTRUCTION, PROCEEDINGS, 2000, 1781 : 35 - 49
  • [23] Java']Java Virtual Machine Educational Tools
    Dobravec, Tomasz
    2019 IEEE 15TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATICS (INFORMATICS 2019), 2019, : 383 - 387
  • [24] Lightweight monitors for the Java']Java virtual machine
    Yang, BS
    Moon, SM
    Ebcioglu, K
    SOFTWARE-PRACTICE & EXPERIENCE, 2005, 35 (03): : 281 - 299
  • [25] Java']Java virtual machine profiler interface
    Viswanathan, D
    Liang, S
    IBM SYSTEMS JOURNAL, 2000, 39 (01) : 82 - 95
  • [26] Asynchronous Java']Java accelerator for embedded Java']Java virtual machine
    Liang, Z
    Plosila, J
    Sere, K
    PROCEEDINGS OF THE IEEE 6TH CIRCUITS AND SYSTEMS SYMPOSIUM ON EMERGING TECHNOLOGIES: FRONTIERS OF MOBILE AND WIRELESS COMMUNICATION, VOLS 1 AND 2, 2004, : 253 - 256
  • [27] Formalizing the safety of Java']Java, the Java']Java virtual machine, and Java']Java card
    Hartel, PH
    Moreau, L
    ACM COMPUTING SURVEYS, 2001, 33 (04) : 517 - 558
  • [28] Characterizing Distributed Machine Learning Workloads on Apache Spark (Experimentation and Deployment Paper)
    Djebrouni, Yasmine
    Rocha, Isabelly
    Bouchenak, Sara
    Chen, Lydia
    Felber, Pascal
    Marangozova, Vania
    Schiavoni, Valerio
    PROCEEDINGS OF THE 24TH ACM/IFIP INTERNATIONAL MIDDLEWARE CONFERENCE, MIDDLEWARE 2023, 2023, : 151 - 164
  • [29] Using B to facilitate a Perl port to the Java']Java Virtual Machine
    Kuhn, BM
    PROCEEDINGS OF THE PERL CONFERENCE 4.0, 2000, : 17 - 23
  • [30] Detecting malicious Java']Java code using virtual machine auditing
    Soman, S
    Krintz, C
    Vigna, G
    USENIX ASSOCIATION PROCEEDINGS OF THE 12TH USENIX SECURITY SYMPOSIUM, 2003, : 153 - 167