Addressing the socioeconomic divide in computational modeling for infectious diseases

被引:20
|
作者
Tizzoni, Michele [1 ]
Nsoesie, Elaine O. [2 ,3 ]
Gauvin, Laetitia [1 ]
Karsai, Marton [4 ,5 ]
Perra, Nicola [6 ]
Bansal, Shweta [7 ]
机构
[1] ISI Fdn, Turin, Italy
[2] Boston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA USA
[3] Boston Univ, Ctr Antiracist Res, Boston, MA USA
[4] Cent European Univ, Dept Network & Data Sci, A-1100 Vienna, Austria
[5] Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[6] Queen Mary Univ London, Sch Math Sci, London, England
[7] Georgetown Univ, Dept Biol, Washington, DC 20057 USA
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
HEALTH; INEQUALITIES; DISPARITIES; INFLUENZA;
D O I
10.1038/s41467-022-30688-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The COVID-19 pandemic has highlighted how structural social inequities fundamentally shape disease dynamics. Here, the authors provide a set of practical and methodological recommendations to address socioeconomic vulnerabilities in epidemic models. The COVID-19 pandemic has highlighted how structural social inequities fundamentally shape disease dynamics, yet these concepts are often at the margins of the computational modeling community. Building on recent research studies in the area of digital and computational epidemiology, we provide a set of practical and methodological recommendations to address socioeconomic vulnerabilities in epidemic models.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] When and where plant cells divide: a perspective from computational modeling
    Roeder, Adrienne H. K.
    CURRENT OPINION IN PLANT BIOLOGY, 2012, 15 (06) : 638 - 644
  • [42] Preparedness activities and research needs in addressing emerging infectious animal and zoonotic diseases
    Cardoen, S.
    De Clercq, K.
    Vanholme, L.
    De Winter, P.
    Thiry, E.
    Van Huffel, X.
    REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2017, 36 (02): : 557 - 568
  • [43] Special issue -: Infectious diseases:: Revisiting problems and addressing future challenges -: Preface
    Wenzel, RP
    Ponce-de-León, S
    ARCHIVES OF MEDICAL RESEARCH, 2005, 36 (06) : 609 - 609
  • [44] Computational medicine: quantitative modeling of complex diseases
    Tiwary, Basant K.
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (02) : 429 - 440
  • [45] EpiPredict: Agent-Based Modeling of Infectious Diseases
    Suer, Janik
    Ponge, Johannes
    Hellingrath, Bernd
    KUNSTLICHE INTELLIGENZ, 2024, 38 (03): : 177 - 181
  • [46] Modeling and computation of multistep batch testing for infectious diseases
    Ahn, Hongshik
    Jiang, Haoran
    Li, Xiaolin
    BIOMETRICAL JOURNAL, 2021, 63 (06) : 1272 - 1289
  • [47] UNDERSTANDING INFECTIOUS-DISEASES - MODELING APPROACHES FOR THE TRYPANOSOMIASES
    GETTINBY, G
    ANNALES DE LA SOCIETE BELGE DE MEDECINE TROPICALE, 1989, 69 : 21 - 30
  • [48] Modeling Infectious Diseases in Mice with a "Humanized" Immune System
    Li, Yan
    Di Santo, James P.
    MICROBIOLOGY SPECTRUM, 2019, 7 (02):
  • [49] MODELING AND CONTROL OF INFECTIOUS DISEASES IN THE HOST: WITH MATLAB AND R
    Handel, Andreas
    PEDIATRIC PULMONOLOGY, 2020, : 275 - 276
  • [50] Modeling Importations and Exportations of Infectious Diseases via Travelers
    Lopez, Luis Fernandez
    Amaku, Marcos
    Bezerra Coutinho, Francisco Antonio
    Quam, Mikkel
    Burattini, Marcelo Nascimento
    Struchiner, Claudio Jose
    Wilder-Smith, Annelies
    Massad, Eduardo
    BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (02) : 185 - 209