Optimally weighted least-squares steganalysis

被引:4
|
作者
Ker, Andrew D. [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
steganography; structural steganalysis; error distribution;
D O I
10.1117/12.704606
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Quantitative steganalysis aims to estimate the amount of payload in a stego object, and such estimators seem to arise naturally in steganalysis of Least Significant Bit (LSB) replacement in digital images. However, as with all steganalysis, the estimators are subject to errors, and their magnitude seems heavily dependent on properties of the cover. In very recent work we have given the first derivation of estimation error, for a certain method of steganalysis (the Least-Squares variant of Sample Pairs Analysis) of LSB replacement steganography in digital images. In this paper we make use of our theoretical results to find an improved estimator and detector. We also extend the theoretical analysis to another (more accurate) steganalysis estimator (Triples Analysis) and hence derive an improved version of that estimator too. Experimental results show, that the new steganalyzers have improved accuracy, particularly in the difficult case of never-compressed covers.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A weighted least-squares approach to clusterwise regression
    Rainer Schlittgen
    [J]. AStA Advances in Statistical Analysis, 2011, 95 : 205 - 217
  • [22] On weighted total least-squares for geodetic transformations
    Vahid Mahboub
    [J]. Journal of Geodesy, 2012, 86 : 359 - 367
  • [23] Generalized fuzzy weighted least-squares regression
    [J]. Fuzzy Sets and Systems, 1996, 82 (03):
  • [24] A generalized fuzzy weighted least-squares regression
    Chang, PT
    Lee, ES
    [J]. FUZZY SETS AND SYSTEMS, 1996, 82 (03) : 289 - 298
  • [25] A weighted view on the partial least-squares algorithm
    Di Ruscio, D
    [J]. AUTOMATICA, 2000, 36 (06) : 831 - 850
  • [26] Weighted Least-squares Color Digital Halftoning
    He, Zifen
    Zhang, Yinhui
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS RESEARCH AND MECHATRONICS ENGINEERING, 2015, 121 : 84 - 87
  • [27] LEAST-SQUARES REFINEMENT AND WEIGHTED DIFFERENCE SYNTHESIS
    DUNITZ, JD
    SEILER, P
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 1973, 29 (MAR15): : 589 - 595
  • [28] On weighted total least-squares for geodetic transformations
    Mahboub, Vahid
    [J]. JOURNAL OF GEODESY, 2012, 86 (05) : 359 - 367
  • [29] JACKKNIFING ESTIMATED WEIGHTED LEAST-SQUARES - JEWLS
    KLEIJNEN, JPC
    KARREMANS, PCA
    OORTWIJN, WK
    VANGROENENDAAL, WJH
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1987, 16 (03) : 747 - 764
  • [30] The Gaussian Maximum-Likelihood Estimator Versus the Optimally Weighted Least-Squares Estimator [Lecture Notes]
    Abdalmoaty, Mohamed Rasheed-Hilmy
    Hjalmarsson, Hakan
    Wahlberg, Bo
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (06) : 195 - 199