The strong Chebyshev distribution and orthogonal Laurent polynomials

被引:3
|
作者
Cooper, SC [1 ]
Gustafson, PE
机构
[1] Washington State Univ, Dept Pure & Appl Math, Pullman, WA 99164 USA
[2] Emporia State Univ, Div Math & Comp Sci, Emporia, KS 66801 USA
关键词
D O I
10.1006/jath.1997.3161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The strong Chebyshev distribution and the Chebyshev orthogonal Laurent polynomials are examined in detail. Explicit formulas are derived for the orthogonal Laurent polynomials, uniform convergence of the associated continued fraction is established, and the zeros of the Chebyshev L-polynomials are given. This provides another well-developed example of a sequence of orthogonal L-polynomials. (C) 1998 Academic Press.
引用
下载
收藏
页码:361 / 378
页数:18
相关论文
共 50 条
  • [21] ORTHOGONAL AND CHEBYSHEV POLYNOMIALS ON 2 INTERVALS
    PEHERSTORFER, F
    ACTA MATHEMATICA HUNGARICA, 1990, 55 (3-4) : 245 - 278
  • [22] Blumenthal's theorem for Laurent orthogonal polynomials
    Ranga, AS
    Van Assche, W
    JOURNAL OF APPROXIMATION THEORY, 2002, 117 (02) : 255 - 278
  • [23] Chebyshev orthogonal polynomials and the Neumann problem
    Nebol'sina, M. N.
    DIFFERENTIAL EQUATIONS, 2010, 46 (03) : 455 - 457
  • [24] Orthogonal Functions Based on Chebyshev Polynomials
    Farikhin
    Mohd, Ismail
    MATEMATIKA, 2011, 27 (01) : 97 - 107
  • [25] Multivariate Orthogonal Laurent Polynomials and Integrable Systems
    Ariznabarreta, Gerardo
    Manas, Manuel
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (01) : 79 - 185
  • [26] Orthogonal Laurent Polynomials of Two Real Variables
    Cruz-Barroso, Ruymán
    Fernández, Lidia
    Studies in Applied Mathematics, 2025, 154 (01)
  • [27] BASIC HYPERGEOMETRIC FUNCTIONS AND ORTHOGONAL LAURENT POLYNOMIALS
    Costa, Marisa S.
    Godoy, Eduardo
    Lamblem, Regina L.
    Sri Ranga, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) : 2075 - 2089
  • [28] Orthogonal Laurent polynomials. A new algebraic approach
    Cruz-Barroso, R.
    Diaz Mendoza, C.
    Orive, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 40 - 54
  • [29] Orthogonal Laurent polynomials of jacobi, hermite, and laguerre types
    Hagler, BA
    Jones, WB
    Thron, WJ
    ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS: THEORY AND APPLICATIONS, 1998, 199 : 187 - 208
  • [30] Laurent skew orthogonal polynomials and related symplectic matrices
    Miki, Hiroshi
    JOURNAL OF APPROXIMATION THEORY, 2020, 259