Progression in Deep Learning Emphysema Grade Predicts Disease Progression and Mortality

被引:0
|
作者
Oh, A. [1 ]
Ash, S. [2 ]
Lynch, D. A. [1 ]
Humphries, S. M. [1 ]
机构
[1] Natl Jewish Hlth, Radiol, Denver, CO USA
[2] Brigham & Womens Hosp, Pulm & Crit Care Med, 75 Francis St, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A5024
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Early Detection of Emphysema Progression
    Gorbunova, Vladlena
    Jacobs, Sander S. A. M.
    Lo, Pechin
    Dirksen, Asger
    Nielsen, Mads
    Bab-Hadiashar, Alireza
    de Bruijne, Marleen
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT II,, 2010, 6362 : 193 - +
  • [42] Radiomics for the Prediction of Emphysema Progression
    Kaner, Robert J.
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2025, 22 (01) : 45 - 46
  • [43] Loss of Peripheral Tolerance in Emphysema Phenotypes, Exacerbations, and Disease Progression
    Bhavani, Sivasubramanium
    Yuan, Xiaoyi
    You, Ran
    Shan, Ming
    Corry, David
    Kheradmand, Farrah
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2015, 12 : S164 - S168
  • [44] PROSTATE LESION GROWTH VELOCITY ON CONSECUTIVE MRIS PREDICTS GRADE PROGRESSION
    Williams, Cheyenne
    Yerram, Nitin
    Daneshvar, Michael
    OConnor, Luke P.
    Egan, Jillian
    Gomella, Patrick T.
    Owens-Walton, Jeunice
    Khondakar, Nabila
    Ahdoot, Michael
    Merino, Maria
    Wood, Bradford
    Choyke, Peter
    Turkbey, Baris
    Pinto, Peter
    JOURNAL OF UROLOGY, 2021, 206 : E396 - E396
  • [45] A Tensorized Multitask Deep Learning Network for Progression Prediction of Alzheimer's Disease
    Tabarestani, Solale
    Eslami, Mohammad
    Cabrerizo, Mercedes
    Curiel, Rosie E.
    Barreto, Armando
    Rishe, Naphtali
    Vaillancourt, David
    DeKosky, Steven T.
    Loewenstein, David A.
    Duara, Ranjan
    Adjouadi, Malek
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [46] Detection of Alzheimer's Disease Progression Using Integrated Deep Learning Approaches
    Shetty, Jayashree
    Shetty, Nisha P.
    Kothikar, Hrushikesh
    Mowla, Saleh
    Anand, Aiswarya
    Hegde, Veeraj
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (02): : 1345 - 1362
  • [47] Deep residual learning for neuroimaging: An application to predict progression to Alzheimer's disease
    Abrol, Anees
    Bhattarai, Manish
    Fedorov, Alex
    Du, Yuhui
    Plis, Sergey
    Calhoun, Vince
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 339
  • [48] Disease Progression Detection via Deep Sequence Learning of Successive Radiographic Scans
    Ahmad, Jamil
    Saudagar, Abdul Khader Jilani
    Malik, Khalid Mahmood
    Ahmad, Waseem
    Khan, Muhammad Badruddin
    Hasanat, Mozaherul Hoque Abul
    AlTameem, Abdullah
    AlKhathami, Mohammed
    Sajjad, Muhammad
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (01)
  • [49] Equitable Deep Learning for Glaucoma Progression Forecasting
    Wang, Mengyu
    Elze, Tobias
    Pasquale, Louis R.
    Shen, Lucy Q.
    Hashemabad, Saber Kazeminasab
    Eslami, Mohammad
    Shi, Min
    Tian, Yu
    Luo, Yan
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [50] Predicting keratoconus progression using deep learning
    Kato, Naoko
    Masumoto, Hiroki
    Tanabe, Mao
    Sakai, Chikako
    Negishi, Kazuno
    Torii, Hidemasa
    Tabuchi, Hitoshi
    Tsubota, Kazuo
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)