An efficient energy-conserving numerical model for the electron energy distribution function in the presence of electron-electron collisions

被引:16
|
作者
D'Angola, A. [2 ]
Coppa, G. [3 ]
Capitelli, M. [1 ,4 ]
Gorse, C. [1 ,4 ]
Colonna, G. [1 ]
机构
[1] CNR IMIP Bari, I-70126 Bari, Italy
[2] Univ Basilicata, I-85100 Potenza, Italy
[3] Politecn Torino, I-10129 Turin, Italy
[4] Univ Bari, I-70126 Bari, Italy
关键词
Boltzmann equation; Electron kinetics; Plasma modeling; Electron-electron collisions; NOZZLE EXPANSION; HYPERSONIC FLOW; IONIZED PLASMAS; KINETICS; COMBUSTION; DISCHARGES; BOLTZMANN; EQUATIONS; SOLVER; STATES;
D O I
10.1016/j.cpc.2010.03.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An efficient algorithm to calculate the contribution of electron-electron collisions in the Boltzmann equation for free electrons, in the two-term approximation is presented. The electron-electron collision term must be energy-conserving, while, due to non-linearity, commonly used algorithms do not satisfy this requirement. The efficiency of the algorithm make feasible the use of a non-linear iterative solver to conserve electron energy in electron-electron collisions. The performance of the proposed algorithm has been compared with standard numerical schemes obtaining: 1) considerable gain in computational time: 2) the conservation of the total electron energy density in e-e collisions under the required tolerance. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1204 / 1211
页数:8
相关论文
共 50 条
  • [31] ELECTRON ENERGY DISTRIBUTION IN PRESENCE OF MOVING STRIATIONS
    DROUET, MG
    SICHA, M
    CLOUTIER, GG
    PHYSICS LETTERS A, 1968, A 27 (08) : 496 - &
  • [32] MEASUREMENT OF ELECTRON ENERGY DISTRIBUTION IN PRESENCE OF OSCILLATIONS
    GULIDOV, SS
    KAGAN, YM
    KOLOKOLO.NB
    MILENIN, VM
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1970, 14 (07): : 993 - &
  • [33] FEMTOSECOND SPECTROSCOPY OF ELECTRON-ELECTRON AND ELECTRON-PHONON ENERGY RELAXATION IN AG AND AN
    GROENEVELD, RHM
    SPRIK, R
    LAGENDIJK, A
    PHYSICAL REVIEW B, 1995, 51 (17): : 11433 - 11445
  • [34] Electron energy distribution functions and second kind collisions
    Capitelli, M.
    Colonna, G.
    De Pascale, O.
    Gorse, C.
    Hassouni, K.
    Longo, S.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (01):
  • [35] Energy exchange in single-particle electron-electron scattering
    Ferry, D.K.
    Goodnick, S.M.
    Hess, K.
    Physica B: Condensed Matter, 1999, 272 (01): : 538 - 541
  • [36] Equation of state for electron-electron interaction energy by Pade approximation
    Zheng, XingRong
    Tian, ChunLing
    Yang, Jiao
    Fu, Yun
    CHINA FUNCTIONAL MATERIALS TECHNOLOGY AND INDUSTRY FORUM, 2013, 320 : 701 - 706
  • [37] The effect of superelastic electron-molecule collisions on the vibrational energy distribution function
    Adamovich, IV
    Rich, JW
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (12) : 1741 - 1745
  • [38] Energy exchange in single-particle electron-electron scattering
    Ferry, DK
    Goodnick, SM
    Hess, K
    PHYSICA B, 1999, 272 (1-4): : 538 - 541
  • [39] Electron temperature and electron energy distribution function in air plasma arcjet
    Lago, V
    Lebéhot, A
    Dudeck, M
    Szymanski, Z
    INTERNATIONAL CONFERENCE ON PHENOMENA IN IONIZED GASES, VOL II, PROCEEDINGS, 1999, : 65 - 66
  • [40] HIGH FREQUENCY MAGNETORESISTANCE AND HALL COEFFICIENT OF A SEMICONDUCTING MATERIAL IN PRESENCE OF ELECTRON-ELECTRON COLLISIONS
    ROY, SK
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1965, 86 (549P): : 133 - &