Evaluation of features for automatic detection of cell nuclei in fluorescence microscopy images

被引:0
|
作者
Fabris, Paolo [1 ]
Vanzella, Walter [1 ]
Pellegrino, Felice Andrea [2 ]
机构
[1] Glance Vis Technol Srl, Area Sci Pk,Edificio Q1,Str Statale 14,Km 163 5, I-34012 Trieste, Italy
[2] Univ Trieste, Dipartimento Ingn & Architettura, I-34127 Trieste, Italy
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of detecting cell nuclei in fluorescence images may be faced by means of a segmentation step, to get the neighbourhood of candidate nuclei, followed by a binary classification step. Important for the latter step is the choice of the descriptors (features) to be extracted from the neighbourhood and used by the classifier. In the present paper, based on a large set of manually labelled samples, we evaluate several of such descriptors combined with some common type of support vector machines. We show that equipping the detection algorithm with the best combination of features/classifier leads to a performance comparable to human labelling by experts.
引用
收藏
页码:683 / +
页数:2
相关论文
共 50 条
  • [21] Automatic noise quantification for confocal fluorescence microscopy images
    Paul, Perrine
    Duessmann, Heiko
    Bernas, Tytus
    Huber, Heinrich
    Kalamatianos, Dimitrios
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2010, 34 (06) : 426 - 434
  • [22] Automatic Annotation of Leishmania Infections in Fluorescence Microscopy Images
    Neves, Joao C.
    Castro, Helena
    Proenca, Hugo
    Coimbra, Miguel
    IMAGE ANALYSIS AND RECOGNITION, 2013, 7950 : 613 - 620
  • [23] Combined Detection and Segmentation of Cell Nuclei in Microscopy Images Using Deep Learning
    Ram, Sundaresh
    Nguyen, Vicky T.
    Limesand, Kirsten H.
    Rodriguez, Jeffrey J.
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 26 - 29
  • [24] NUCLEI DETECTION AND SEGMENTATION OF FLUORESCENCE MICROSCOPY IMAGES USING THREE DIMENSIONAL CONVOLUTIONAL NEURAL NETWORKS
    Ho, David Joon
    Fu, Chichen
    Salama, Paul
    Dunn, Kenneth W.
    Delp, Edward J.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 418 - 422
  • [25] Improved and Robust Detection of Cell Nuclei from Four Dimensional Fluorescence Images
    Bashar, Md Khayrul
    Yamagata, Kazuo
    Kobayashi, Tetsuya J.
    PLOS ONE, 2014, 9 (07):
  • [26] Fast automatic segmentation of nuclei in microscopy images of tissue sections
    Laurain, V.
    Ramoser, H.
    Nowak, C.
    Steiner, G. E.
    Ecker, R.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 3367 - 3370
  • [27] Automatic Single-Cell Segmentation and Tracking of Bacterial Cells in Fluorescence Microscopy Images
    Liluashvili, Vaja
    Bergeest, Jan-Philip
    Harder, Nathalie
    Ziesack, Marika
    Mutlu, Alper
    Bischofs, Ilka B.
    Rohr, Karl
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 239 - 244
  • [28] THREE DIMENSIONAL NUCLEI SEGMENTATION AND CLASSIFICATION OF FLUORESCENCE MICROSCOPY IMAGES
    Han, Shuo
    Lee, Soonam
    Chen, Main
    Yang, Changye
    Salama, Paul
    Dunn, Kenneth W.
    Delp, Edward J.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 526 - 530
  • [29] Automatic Identification of CTCs in Fluorescence Microscope Images Using Morphological Filtering to Detect Cell Nuclei
    Hashimoto, Kazuki
    Park, Junhyun
    Ha, Seongmin
    Jung, Hyo-Il
    Kamiya, Tohru
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 554 - 557
  • [30] Detection of Filamentous Microorganisms in Fluorescence Microscopy Images
    Yu, Yongjian
    Wang, Jue
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1895 - 1898