Evaluation of features for automatic detection of cell nuclei in fluorescence microscopy images

被引:0
|
作者
Fabris, Paolo [1 ]
Vanzella, Walter [1 ]
Pellegrino, Felice Andrea [2 ]
机构
[1] Glance Vis Technol Srl, Area Sci Pk,Edificio Q1,Str Statale 14,Km 163 5, I-34012 Trieste, Italy
[2] Univ Trieste, Dipartimento Ingn & Architettura, I-34127 Trieste, Italy
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of detecting cell nuclei in fluorescence images may be faced by means of a segmentation step, to get the neighbourhood of candidate nuclei, followed by a binary classification step. Important for the latter step is the choice of the descriptors (features) to be extracted from the neighbourhood and used by the classifier. In the present paper, based on a large set of manually labelled samples, we evaluate several of such descriptors combined with some common type of support vector machines. We show that equipping the detection algorithm with the best combination of features/classifier leads to a performance comparable to human labelling by experts.
引用
收藏
页码:683 / +
页数:2
相关论文
共 50 条
  • [1] Automatic Detection of Filopodia from Fluorescence Microscopy Images
    Nilufar, Sharmin
    Morrow, Anne A.
    Lee, Jonathan M.
    Perkins, Theodore J.
    PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, 2013, : 251 - +
  • [2] FiloDetect: automatic detection of filopodia from fluorescence microscopy images
    Nilufar, Sharmin
    Morrow, Anne A.
    Lee, Jonathan M.
    Perkins, Theodore J.
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [3] Object-Oriented Segmentation of Cell Nuclei in Fluorescence Microscopy Images
    Koyuncu, Can Fahrettin
    Cetin-Atalay, Rengul
    Gunduz-Demir, Cigdem
    CYTOMETRY PART A, 2018, 93A (10) : 1019 - 1028
  • [4] Segmentation of Cell Nuclei in Fluorescence Microscopy Images Using Deep Learning
    Narotamo, Hemaxi
    Sanches, J. Miguel
    Silveira, Margarida
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 53 - 64
  • [5] Automatic Detection and Identification of Trichomonas Vaginalis from Fluorescence Microscopy Images
    Yu, Yongjian
    Wang, Jue
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOIMAGING), VOL 2, 2021, : 190 - 197
  • [6] Automatic Extraction of Nuclei Centroids of Mouse Embryonic Cells from Fluorescence Microscopy Images
    Bashar, Md Khayrul
    Komatsu, Koji
    Fujimori, Toshihiko
    Kobayashi, Tetsuya J.
    PLOS ONE, 2012, 7 (05):
  • [7] Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images
    Al-Kofahi, Yousef
    Lassoued, Wiem
    Lee, William
    Roysam, Badrinath
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (04) : 841 - 852
  • [8] Size-Invariant Detection of Cell Nuclei in Microscopy Images
    Ram, Sundaresh
    Rodriguez, Jeffrey J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (07) : 1753 - 1764
  • [9] Automatic measurement of compression wood cell attributes in fluorescence microscopy images
    Selig, B.
    Hendriks, C. L. Luengo
    Bardage, S.
    Daniel, G.
    Borgefors, G.
    JOURNAL OF MICROSCOPY, 2012, 246 (03) : 298 - 308
  • [10] Automatic segmentation of cell nuclei from confocal laser scanning microscopy images
    Kelemen, A
    Szekely, G
    Reist, HW
    Gerig, G
    VISUALIZATION IN BIOMEDICAL COMPUTING, 1996, 1131 : 193 - 202