Gaussian Mixture Latent Vector Grammars

被引:0
|
作者
Zhao, Yanpeng [1 ]
Zhang, Liwen [1 ]
Tu, Kewei [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1 | 2018年
基金
中国国家自然科学基金;
关键词
MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce Latent Vector Grammars (LVeGs), a new framework that extends latent variable grammars such that each nonterminal symbol is associated with a continuous vector space representing the set of (infinitely many) subtypes of the nonterminal. We show that previous models such as latent variable grammars and compositional vector grammars can be interpreted as special cases of LVeGs. We then present Gaussian Mixture LVeGs (GM-LVeGs), a new special case of LVeGs that uses Gaussian mixtures to formulate the weights of production rules over subtypes of nonterminals. A major advantage of using Gaussian mixtures is that the partition function and the expectations of subtype rules can be computed using an extension of the inside-outside algorithm, which enables efficient inference and learning. We apply GM-LVeGs to part-of-speech tagging and constituency parsing and show that GM-LVeGs can achieve competitive accuracies. Our code is available at https://github.com/zhaoyanpeng/lveg.
引用
收藏
页码:1181 / 1189
页数:9
相关论文
共 50 条
  • [21] On Entropy-Constrained Vector Quantization using Gaussian Mixture Models
    Zhao, David Y.
    Samuelsson, Jonas
    Nilsson, Mattias
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2008, 56 (12) : 2094 - 2104
  • [22] Speech emotion recognition using Gaussian mixture vector autoregressive models
    El Ayadi, Moataz M. H.
    Kamel, Mohamed S.
    Karray, Fakhri
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3, 2007, : 957 - +
  • [23] A Combination of Gaussian Mixture Model and Support Vector Machine for Speaker Verification
    Quoc Nguyen Viet
    Bao Hung Tran
    Bang Nguyen Phuong
    Duc Lung Vu
    2017 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2017, : 432 - 436
  • [24] A bilateral fuzzy support vector machine hybridizing the Gaussian mixture model
    Mohammadi, M.
    Sarmad, M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021, 18 (03): : 161 - 177
  • [25] Lexicon expansion for latent variable grammars
    Zeng, Xiaodong
    Wong, Derek F.
    Chao, Lidia S.
    Trancoso, Isabel
    He, Liangye
    Huang, Qiuping
    PATTERN RECOGNITION LETTERS, 2014, 42 : 47 - 55
  • [26] Vector grammars and PN machines
    蒋昌俊
    Science in China(Series E:Technological Sciences), 1996, (01) : 50 - 60
  • [27] Vector grammars and PN machines
    Jiang, CJ
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 1996, 39 (01): : 50 - 60
  • [28] Acoustic-to-Articulatory Inversion Mapping based on Latent Trajectory Gaussian Mixture Model
    Tobing, Patrick Lumban
    Toda, Tomoki
    Kameoka, Hirokazu
    Nakamura, Satoshi
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 953 - 957
  • [29] NON-RIGID MULTIPLE POINT SET REGISTRATION USING LATENT GAUSSIAN MIXTURE
    Huang, Hao
    Chen, Cheng
    Fang, Yi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3181 - 3185
  • [30] Vector Quantization Decision Function for Gaussian Mixture Model Based Speaker Identification
    Ahmad, Abdul Manan
    Yee, Loh Mun
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS 2008), 2008, : 363 - 366