On multiplicity of eigenvalues in quantum graph theory

被引:1
|
作者
Pivovarchik, V. [1 ]
机构
[1] South Ukrainian Natl Pedag Univ, Staroportofrankovskaya Str 26, UA-65020 Odessa, Ukraine
关键词
Dirichlet boundary condition; Neumann boundary condition; Kirchhoff's condition; Spectrum; Tree; DIFFERENTIAL-EQUATIONS; NEVANLINNA FUNCTIONS;
D O I
10.1016/j.jmaa.2019.123412
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spectral problems are considered generated by the Sturm-Liouville equation on equilateral trees with the Dirichlet boundary conditions at pendant vertices and continuity and Kirchhoff's conditions at interior vertices. It is shown that the eigenvalues of such problems approach asymptotically the eigenvalues of the problem on the same tree with zero potentials on the edges. It is shown that between any two eigenvalues of maximal multiplicity (p(pen)-1) where p(pen) is the number of pendant vertices there are p(in) eigenvalues (with account of multiplicity, where p(in) is the number of interior vertices in the tree). (C) 2019 Published by Elsevier Inc.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] TWO CONJECTURES IN SPECTRAL GRAPH THEORY INVOLVING THE LINEAR COMBINATIONS OF GRAPH EIGENVALUES
    Liu, Lele
    arXiv, 2022,
  • [22] The Eigenvalues and Laplacian Eigenvalues of A Graph
    Wang, Haitang
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 337 - 341
  • [23] A SIMPLE APPROXIMATION FOR EIGENVALUES IN QUANTUM-THEORY
    MITTER, H
    YAMAZAKI, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (06): : 1215 - 1224
  • [24] On the multiplicity of laplacian eigenvalues of graphs
    Ji-Ming Guo
    Lin Feng
    Jiong-Ming Zhang
    Czechoslovak Mathematical Journal, 2010, 60 : 689 - 698
  • [25] MULTIPLICITY OF NEUMANN PROBLEM EIGENVALUES
    NADIRASHVILI, NS
    DOKLADY AKADEMII NAUK SSSR, 1986, 286 (06): : 1303 - 1305
  • [26] Simplicity of eigenvalues and non-vanishing of eigenfunctions of a quantum graph
    Berkolaiko, Gregory
    Liu, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 803 - 818
  • [27] On the multiplicity of eigenvalues of the Laplacian on surfaces
    Hoffmann-Ostenhof, M
    Hoffmann-Ostenhof, T
    Nadirashvili, N
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (01) : 43 - 48
  • [28] On the Multiplicity of Eigenvalues of the Laplacian on Surfaces
    M. Hoffmann-Ostenhof
    T. Hoffmann-Ostenhof
    N. Nadirashvili
    Annals of Global Analysis and Geometry, 1999, 17 : 43 - 48
  • [29] The multiplicity of eigenvalues of unicyclic graphs
    Du, Zhibin
    Huang, Yinhao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 670 : 19 - 41
  • [30] ON THE MULTIPLICITY OF LAPLACIAN EIGENVALUES OF GRAPHS
    Guo, Ji-Ming
    Feng, Lin
    Zhang, Jiong-Ming
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 689 - 698