Simulation of a method for forming a laser-cooled positron plasma

被引:15
|
作者
Newbury, AS [1 ]
Jelenkovic, BM
Bollinger, JJ
Wineland, DJ
机构
[1] Natl Inst Stand & Technol, Div Time & Frequency, Boulder, CO 80303 USA
[2] MIT, Lincoln Lab, Lexington, MA 02420 USA
[3] Univ Belgrade, Inst Phys, Belgrade, Yugoslavia
关键词
D O I
10.1103/PhysRevA.62.023405
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have simulated the trapping and cooling of moderated positrons in a Penning trap in which the positrons lose energy through collisions with a simultaneously stored laser-cooled Be-9(+) plasma. Once the positrons are trapped, they cool through sympathetic cooling with the Be-9(+) plasma After the positrons cool, their motion parallel to the magnetic field reaches a state of thermal equilibrium with the Be-9(+) ions and they rotate about the trap axis at the same frequency as the Be-9(+) ions. Therefore, a centrifugal separation will occur, forcing the positrons to coalesce into a cold column along the trap axis. A simulation which, in part, utilizes Monte Carlo techniques, indicates a capture efficiency of as high as 0.3% for 300 K moderated positrons passing through a Be-9(+) plasma with a density of 10(10) atoms cm(-3) and a column length of 1 cm. This capture efficiency leads to the positron capture rate of similar to 1000 positrons per second, assuming a 100 mCi positron source and 10(-3) for the efficiency far moderating positrons from the source. The resulting dense reservoirs of cold positrons may be useful for antihydrogen production and for reaching a plasma state in which the mode dynamics must be treated quantum mechanically.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Equation of state of a laser-cooled gas
    Rodrigues, J. D.
    Rodrigues, J. A.
    Moreira, O. L.
    Tercas, H.
    Mendonca, J. T.
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [22] Predictions for laser-cooled RB clocks
    Kokkelmans, S.J.J.M.F.
    Verhaar, B.J.
    Gibble, K.
    Heinzen, D.J.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1997, 56 (06):
  • [23] LASER-COOLED ATOMIC FREQUENCY STANDARD
    BOLLINGER, JJ
    PRESTAGE, JD
    ITANO, WM
    WINELAND, DJ
    PHYSICAL REVIEW LETTERS, 1985, 54 (10) : 1000 - 1003
  • [24] EXPERIMENTS WITH LASER-COOLED RUBIDIUM ATOMS
    PIETILAINEN, A
    LUDVIGSEN, H
    TALVITIE, H
    IKONEN, E
    OPTICAL ENGINEERING, 1995, 34 (09) : 2637 - 2640
  • [25] Laser-cooled Rb fountain clocks
    Fertig, Chad
    Legere, Ron
    Suptitz, Wenko
    Gibble, Kurt
    Proceedings of the Annual IEEE International Frequency Control Symposium, 1999, 1 : 39 - 42
  • [26] PLAYING BALL WITH LASER-COOLED ATOMS
    CLERY, D
    SCIENCE, 1993, 262 (5138) : 1378 - 1378
  • [27] Lattice Interferometer for Laser-Cooled Atoms
    Andersen, Mikkel F.
    Sleator, Tycho
    PHYSICAL REVIEW LETTERS, 2009, 103 (07)
  • [28] Laser-cooled fluorescence mass spectrometry using laser-cooled barium ions in a tandem linear ion trap
    Baba, T
    Waki, I
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (08) : 4592 - 4598
  • [29] Laser-cooled fluorescence mass spectrometry using laser-cooled barium ions in a tandem linear ion trap
    Baba, T.
    Waki, I.
    1600, American Institute of Physics Inc. (89):
  • [30] Laser-cooled radioactive francium factory at CYRIC
    Kawamura, Hirokazu
    Arikawa, H.
    Ezure, S.
    Harada, K.
    Hayamizu, T.
    Inoue, T.
    Ishikawa, T.
    Itoh, M.
    Kato, T.
    Sato, T.
    Aoki, T.
    Furukawa, T.
    Hatakeyama, C. A.
    Hatanaka, K.
    Imai, K.
    Murakami, T.
    Nataraj, H. S.
    Shimizu, Y.
    Wakasa, T.
    Yoshida, H. P.
    Sakemi, Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2013, 317 : 582 - 585