Novel Hyperbolic Homoclinic Solutions of the Helmholtz-Duffing Oscillators

被引:0
|
作者
Chen, Yang-Yang [1 ]
Chen, Shu-Hui [2 ]
Wang, Wei-Wei [2 ]
机构
[1] Guangzhou Univ, Key Lab Vibrat Control & Struct Safety, Guangzhou 510405, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Dept Appl Mech & Engn, Guangzhou 510275, Guangdong, Peoples R China
关键词
NONLINEAR OSCILLATORS; LIMIT-CYCLES; PERTURBATION; BIFURCATIONS; CHAOS;
D O I
10.1155/2016/9471423
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The exact and explicit homoclinic solution of the undamped Helmholtz-Duffing oscillator is derived by a presented hyperbolic function balance procedure. The homoclinic solution of the self-excited Helmholtz-Duffing oscillator can also be obtained by an extended hyperbolic perturbation method. The application of the present homoclinic solutions to the chaos prediction of the nonautonomous Helmholtz-Duffing oscillator is performed. Effectiveness and advantage of the present solutions are shown by comparisons.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Dynamical behaviour of parametrically driven Duffing and externally driven Helmholtz–Duffing oscillators under nonlinear dissipation
    Vinod Patidar
    Anjali Sharma
    G. Purohit
    Nonlinear Dynamics, 2016, 83 : 375 - 388
  • [42] SUBHARMONIC SOLUTIONS AND TRANSITION TO CHAOS IN DUFFING OSCILLATORS
    SCHMIDT, G
    SEISL, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (04): : T49 - T52
  • [43] Solutions of a Class of Duffing Oscillators with Variable Coefficients
    Pilar G. Estévez
    Şengül Kuru
    Javier Negro
    Luis M. Nieto
    International Journal of Theoretical Physics, 2011, 50 : 2046 - 2056
  • [44] STABILITY TRANSITIONS OF CERTAIN EXACT PERIODIC RESPONSES IN UNDAMPED HELMHOLTZ AND DUFFING OSCILLATORS
    GRAVADOR, E
    THYLWE, KE
    HOKBACK, A
    JOURNAL OF SOUND AND VIBRATION, 1995, 182 (02) : 209 - 220
  • [45] Exact closed-form solution for the completely integrable helmholtz-duffing oscillator with applications to real-world problems
    Big-Alabo, Akuro
    Alfred, Peter B.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2025, 44 (01) : 437 - 460
  • [46] Homoclinic solutions for a kind of prescribed mean curvature Duffing-type equation
    Zaitao Liang
    Shiping Lu
    Advances in Difference Equations, 2013
  • [47] Homoclinic solutions for a kind of prescribed mean curvature Duffing-type equation
    Liang, Zaitao
    Lu, Shiping
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [48] A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators
    Chen, S. H.
    Chen, Y. Y.
    Sze, K. Y.
    JOURNAL OF SOUND AND VIBRATION, 2009, 322 (1-2) : 381 - 392
  • [49] A hyperbolic Lindstedt–Poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators
    Y. Y. Chen
    S. H. Chen
    K. Y. Sze
    Acta Mechanica Sinica, 2009, 25 : 721 - 729
  • [50] A hyperbolic Lindstedt-Poincare method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators
    Y.Y.Chen
    S.H.Chen
    K.Y.Sze
    Acta Mechanica Sinica, 2009, 25 (05) : 721 - 729