Ti/ZnO-Fe2O3 composite: Synthesis, characterization and application as a highly efficient photoelectrocatalyst for methanol from CO2 reduction

被引:68
|
作者
Xia, Shengjie [1 ]
Meng, Yue [1 ,2 ]
Zhou, Xiaobo [3 ]
Xue, Jilong [1 ]
Pan, Guoxiang [2 ]
Ni, Zheming [1 ]
机构
[1] Zhejiang Univ Technol, Dept Chem, Coll Chem Engn, Hangzhou 310032, Zhejiang, Peoples R China
[2] Huzhou Teachers Coll, Sch Life Sci, Dept Mat Chem, Huzhou 313000, Peoples R China
[3] Toxikon Corp, 15 Wiggins Ave, Bedford, MA 01730 USA
基金
中国国家自然科学基金;
关键词
Ti/ZnO-Fe2O3; composite; Photoelectrocatalysis; Methanol; CO2; reduction; Mechanism; LAYERED DOUBLE HYDROXIDES; VISIBLE-LIGHT; PHOTOCATALYTIC ACTIVITY; WATER OXIDATION; CARBON-DIOXIDE; FORMIC-ACID; DEGRADATION; ELIMINATION; MECHANISM; CATALYSTS;
D O I
10.1016/j.apcatb.2016.01.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, Ti/ZnO-Fe2O3 composite derived from Ti/Schiff base intercalated ZnFe layered double hydroxides was used as thin film electrode in CO2 photoelectroreduction. The influence of molar ratio of Ti/Fe and calcination temperature, which would affect the composites' physicochemical property and the photoelectrocatalytic performance for CO2 reduction, were investigated in detail. The characterization results from XRD, SEM, TEM, UV-vis and BET showed that Ti/ZnO-Fe2O3 composite with flower-like crystal from had small particle sizes, narrow band gap and excellent textural properties. The final product of CO2 photoelectroreduction was methanol and the intermediates were formic acid and formaldehyde. The methanol field reached at 0.773 mmol/cm(2) after 3 h reaction with 0.5 V voltage by Ti/ZnO-Fe2O3 composite with Ti/Fe = 1, calcined at 800 degrees C. In addition, the CO2 photoelectroreduction pathway and the reason for highly efficient photoelectrocatalytic activity of the composite were also discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:122 / 133
页数:12
相关论文
共 50 条
  • [21] METHANOL SYNTHESIS FROM CO2 AND H2 OVER CU/ZNO/GA2O3 CATALYST
    FUJITANI, T
    SAITO, M
    KANAI, Y
    TAKEUCHI, M
    MORIYA, K
    WATANABE, T
    KAWAI, M
    KAKUMOTO, T
    CHEMISTRY LETTERS, 1993, (06) : 1079 - 1080
  • [22] Methanol synthesis from CO2 and H2 on CU/ZnO/Al2O3-ZrO2 catalysts
    Sloczynski, J
    Bobinska, T
    Grabowski, R
    Kozlowska, A
    Lachowska, M
    Skrzypek, J
    PRZEMYSL CHEMICZNY, 2000, 79 (04): : 120 - +
  • [23] Preparation, characterization and application of Cr2O3/ZnO catalysts for methanol synthesis
    Bradford, MCJ
    Konduru, MV
    Fuentes, DX
    FUEL PROCESSING TECHNOLOGY, 2003, 83 (1-3) : 11 - 25
  • [25] Synthesis of natural superlattice structure in the binary ZnO-Fe2O3 system by microwave irradiation
    Katayose, Satomi
    Miyazaki, Takamichi
    Hayashi, Yamato
    Takizawa, Hirotsugu
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2010, 118 (1377) : 387 - 389
  • [26] DFT insights into electrocatalytic CO2 reduction to methanol on α-Fe2O3(0001) surfaces
    Kumar, Nandha
    Seriani, Nicola
    Gebauer, Ralph
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (19) : 10819 - 10827
  • [27] Mononuclear Re sites on In2O3 catalyst for highly efficient CO2 hydrogenation to methanol
    Tang, Shan
    Feng, Zhendong
    Han, Zhe
    Sha, Feng
    Tang, Chizhou
    Zhang, Ying
    Wang, Jijie
    Li, Can
    JOURNAL OF CATALYSIS, 2023, 417 : 462 - 472
  • [28] Preparation of high performance Cu/ZnO/Al2O3 catalyst for methanol synthesis from CO2 hydrogenation by coprecipitation-reduction
    Cao, Y
    Chen, LF
    Dai, WL
    Fan, KN
    Wu, D
    Sun, YH
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2003, 24 (07): : 1296 - 1298
  • [29] Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol
    Fang, Xin
    Men, Yuhan
    Wu, Fan
    Zhao, Qinghu
    Singh, Ranjeet
    Xiao, Penny
    Liu, Liying
    Du, Tao
    Webley, Paul A.
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (04) : 747 - 755
  • [30] Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol
    Xin Fang
    Yuhan Men
    Fan Wu
    Qinghu Zhao
    Ranjeet Singh
    Penny Xiao
    Liying Liu
    Tao Du
    Paul A. Webley
    Korean Journal of Chemical Engineering, 2021, 38 : 747 - 755