Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications

被引:68
|
作者
Song, Zitao [1 ]
Huang, Daiyun [2 ,3 ]
Song, Bowen [1 ,4 ]
Chen, Kunqi [5 ]
Song, Yiyou [2 ]
Liu, Gang [1 ]
Su, Jionglong [6 ]
de Magalhaes, Joao Pedro [7 ]
Rigden, Daniel J. [4 ]
Meng, Jia [2 ,4 ,8 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Dept Biol Sci, Suzhou, Peoples R China
[3] Univ Liverpool, Dept Comp Sci, Liverpool, Merseyside, England
[4] Univ Liverpool, Inst Syst Mol & Integrat Biol, Liverpool, Merseyside, England
[5] Fujian Med Univ, Sch Basic Med Sci, Lab Minist Educ Gastrointestinal Canc, Fuzhou, Peoples R China
[6] Xian Jiaotong Liverpool Univ, XJTLU Entrepreneur Coll Taicang, Sch AI & Adv Comp, Suzhou, Peoples R China
[7] Univ Liverpool, Inst Ageing & Chron Dis, Liverpool, Merseyside, England
[8] Xian Jiaotong Liverpool Univ, AI Univ Res Ctr, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
WEB SERVER; SITES; PSEUDOURIDINE; NUCLEOTIDE; DATABASE; TISSUES;
D O I
10.1038/s41467-021-24313-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent studies suggest that epi-transcriptome regulation via post-transcriptional RNA modifications is vital for all RNA types. Precise identification of RNA modification sites is essential for understanding the functions and regulatory mechanisms of RNAs. Here, we present MultiRM, a method for the integrated prediction and interpretation of post-transcriptional RNA modifications from RNA sequences. Built upon an attention-based multi-label deep learning framework, MultiRM not only simultaneously predicts the putative sites of twelve widely occurring transcriptome modifications (m(6)A, m(1)A, m(5)C, m(5)U, m(6)Am, m(7)G, Psi, I, Am, Cm, Gm, and Um), but also returns the key sequence contents that contribute most to the positive predictions. Importantly, our model revealed a strong association among different types of RNA modifications from the perspective of their associated sequence contexts. Our work provides a solution for detecting multiple RNA modifications, enabling an integrated analysis of these RNA modifications, and gaining a better understanding of sequence-based RNA modification mechanisms. RNA modifications appear to play a role in determining RNA structure and function. Here, the authors develop a deep learning model that predicts the location of 12 RNA modifications using primary sequence, and show that several modifications are associated, which suggests dependencies between them.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Multi-Label Classification by ART-based Neural Networks and Hierarchy Extraction
    Benites, Fernando
    Brucker, Florian
    Sapozhnikova, Elena
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [32] Gaze Estimation with Multi-scale Attention-based Convolutional Neural Networks
    Zhang, Yuanyuan
    Li, Jing
    Ouyang, Gaoxiang
    2023 29TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE, M2VIP 2023, 2023,
  • [33] Phenotype prediction from single-cell RNA-seq data using attention-based neural networks
    Mao, Yuzhen
    Lin, Yen-Yi
    Wong, Nelson K. Y.
    Volik, Stanislav
    Sar, Funda
    Collins, Colin
    Ester, Martin
    BIOINFORMATICS, 2024, 40 (02)
  • [34] LA-HCN: Label-based Attention for Hierarchical Multi-label Text Classification Neural Network
    Zhang, Xinyi
    Xu, Jiahao
    Soh, Charlie
    Chen, Lihui
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [35] Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks
    Ma, Fenglong
    Chitta, Radha
    Zhou, Jing
    You, Quanzeng
    Sun, Tong
    Gao, Jing
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 1903 - 1911
  • [36] A Deep Neural Network Based Hierarchical Multi-Label Classifier for Protein Function Prediction
    Yuan, Xin
    Li, Weite
    Lin, Kui
    Hu, Jinglu
    PROCEEDING OF THE 2019 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (IEEE CITS 2019), 2019, : 131 - 135
  • [37] Channel attention-based spatial-temporal graph neural networks for traffic prediction
    Wang, Bin
    Gao, Fanghong
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 58 (01) : 81 - 94
  • [38] HOT-VAE: Learning High-Order Label Correlation for Multi-Label Classification via Attention-Based Variational Autoencoders
    Zhao, Wenting
    Kong, Shufeng
    Bai, Junwen
    Fink, Daniel
    Gomes, Carla
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15016 - 15024
  • [39] Attention-Based Recurrent Multi-Channel Neural Network for Influenza Epidemic Prediction
    Fu, Bofeng
    Yang, Yaodong
    Ma, Yu
    Hao, Jianye
    Chen, Siqi
    Liu, Shuang
    Li, Tiegang
    Liao, Zhenyu
    Zhu, Xianglei
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 1245 - 1248
  • [40] Multi-Label Classification of Multi-lead ECG Based on Deep 1D Convolutional Neural Networks With Residual and Attention Mechanism
    Liu, Yamin
    Xie, Hanshuang
    Cao, Qineng
    Yan, Jiayi
    Wu, Fan
    Zhu, Huaiyu
    Pan, Yun
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,