Hypersurfaces Satisfying τ2(φ) = ητ(φ) in Pseudo-Riemannian Space Forms

被引:4
|
作者
Du, Li [1 ]
Zhang, Juan [1 ]
Xie, Xun [2 ]
机构
[1] Gansu Univ Chinese Med, Dept Sci Teaching, Dingxi Campus, Dingxi 743000, Gansu, Peoples R China
[2] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
关键词
Pseudo-Riemannian space forms; Hypersurfaces; Diagonalizable shape operator; Principal curvatures; LORENTZ HYPERSURFACES; SUBMANIFOLDS; DELTA(H)OVER-RIGHT-ARROW;
D O I
10.1007/s11040-017-9248-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derived the equations for the hypersurface M-r(n) of a pseudo-Riemannian space form N-q(n+1) (c) to satisfy tau(2)(phi) = eta tau(phi) (eta a constant) with tau(phi) and tau(2)(phi) be the tension and bitension fields of M-r(n). As applications, we prove that a hypersurface M-r(n) satisfying tau(2)(phi) = eta tau(phi) in N-q(n+1) (c) has constant mean curvature, under the assumption that M-r(n) has diagonalizable shape operator with at most three distinct principal curvatures. Then, using this result, we classify partially such hypersurface. We also make a preliminary study of hypersurfaces satisfying tau(2)(phi) = f tau(phi) with f be function.
引用
收藏
页数:23
相关论文
共 50 条