Convergence Towards the End Space for Random Walks on Schreier Graphs

被引:0
|
作者
Stankov, Bogdan [1 ]
机构
[1] PSL Res Univ, CNRS, Ecole Normale Super, Dept Math & Applicat, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
Random walks on groups; Poisson boundary; Schreier graph; Thompson's group F; BOUNDARY;
D O I
10.1007/s10959-021-01104-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a transitive action of a finitely generated group G and the Schreier graph Gamma defined by this action for some fixed generating set. For a probability measure mu on G with a finite first moment, we show that if the induced random walk is transient, it converges towards the space of ends of Gamma. As a corollary, we obtain that for a probability measure with a finite first moment on Thompson's group F, the support of which generates F as a semigroup, the induced random walk on the dyadic numbers has a non-trivial Poisson boundary. Some assumption on the moment of the measure is necessary as follows from an example by Juschenko and Zheng.
引用
下载
收藏
页码:1412 / 1422
页数:11
相关论文
共 50 条
  • [1] Convergence Towards the End Space for Random Walks on Schreier Graphs
    Bogdan Stankov
    Journal of Theoretical Probability, 2022, 35 : 1412 - 1422
  • [2] On convergence of random walks on moduli space
    Prohaska, Roland
    ILLINOIS JOURNAL OF MATHEMATICS, 2021, 65 (03) : 735 - 747
  • [3] Convergence of blanket times for sequences of random walks on critical random graphs
    Andriopoulos, George
    COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (03): : 478 - 515
  • [4] Random Schreier graphs and expanders
    Sabatini, Luca
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (03) : 889 - 901
  • [5] Random Schreier graphs and expanders
    Luca Sabatini
    Journal of Algebraic Combinatorics, 2022, 56 : 889 - 901
  • [6] Convergence of mixing times for sequences of random walks on finite graphs
    Croydon, D. A.
    Hambly, B. M.
    Kumagai, T.
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 32
  • [7] Space-Efficient Random Walks on Streaming Graphs
    Papadias, Serafeim
    Kaoudi, Zoi
    Quiane-Ruiz, Jorge-Arnulfo
    Markl, Volker
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (02): : 356 - 368
  • [8] On the convergence of random walks in one-dimensional space
    T.-B.-B Duong
    H. -C Lam
    Acta Mathematica Hungarica, 2025, 175 (1) : 174 - 184
  • [9] Random Walks on Random Graphs
    Cooper, Colin
    Frieze, Alan
    NANO-NET, 2009, 3 : 95 - +
  • [10] On the trace of random walks on random graphs
    Frieze, Alan
    Krivelevich, Michael
    Michaeli, Peleg
    Peled, Ron
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 : 847 - 877