One-step solution process toward formation of Li6PS5Cl argyrodite solid electrolyte for all-solid-state lithium-ion batteries

被引:44
|
作者
Zhang, Zhixia [1 ]
Zhang, Long [1 ]
Liu, Yanyan [1 ]
Yan, Xinlin [2 ]
Xu, Bo [3 ]
Wang, Li-min [3 ]
机构
[1] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[2] Vienna Univ Technol, Inst Solid State Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[3] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
基金
国家重点研发计划;
关键词
Argyrodite; Solid electrolyte; Coating; Chemical synthesis; All-solid-state battery; LIQUID-PHASE TECHNIQUE; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ELECTRODES; SECONDARY BATTERIES; N-METHYLFORMAMIDE; CONDUCTIVITY; LI7P3S11; INTERFACES; BULK; CL;
D O I
10.1016/j.jallcom.2019.152103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solution-processability is one of the merits of sulfide solid electrolytes because it is a facile and scalable process to construct a thin electrolyte coating layer on active material powders to reduce the interfacial resistance. Herein the argyrodite-type Li6PS5X is synthesized by an one-step solution-process method with ethanol, which avoids the multi-step processes and toxic solvent adopted in other reported works, and greatly reduces the processing time. The as-synthesized Li6PS5Cl has room temperature ionic conductivity of 0.21 mS cm(-1) and comparable Li-dendrite suppression ability to solid-state-sintered Li6PS5Cl, despite of the unavoidable impurities due to the use of the protic solvent. By coating Li6PS5Cl on LiCoO2 particles with the one-step solution process, the assembled all-solid-state battery exhibits higher capacity and better rate capability than the uncoated baseline battery. The improved electrochemical performance is attributed to a well-maintained interfacial resistance during cycling by the interfacial architecture, though the performance is not good yet and need to be further improved. The one-step solution-process method can be used for coating cathode materials. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries
    Su, Han
    Liu, Yu
    Zhong, Yu
    Li, Jingru
    Wang, Xiuli
    Xia, Xinhui
    Gu, Changdong
    Tu, Jiangping
    NANO ENERGY, 2022, 96
  • [42] Zn substituted Li4P2S6 as a solid lithium-ion electrolyte for all-solid-state lithium batteries
    Lyoo, Jeyne
    Kim, Hyojeong J.
    Hyoung, Jooeun
    Chae, Munseok S.
    Hong, Seung-Tae
    JOURNAL OF SOLID STATE CHEMISTRY, 2023, 320
  • [43] High Energy Density Single-Crystal NMC/Li6PS5Cl Cathodes for All-Solid-State Lithium-Metal Batteries
    Doerrer, Christopher
    Capone, Isaac
    Narayanan, Sudarshan
    Liu, Junliang
    Grovenor, Chris R. M.
    Pasta, Mauro
    Grant, Patrick S.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (31) : 37809 - 37815
  • [44] Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries
    Zhou, Laidong
    Minafra, Nicolo
    Zeier, Wolfgang G.
    Nazar, Linda F.
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (12) : 2717 - 2728
  • [45] Blending a Li3N/Li3YCl6 solid electrolyte with Li6PS5Cl argyrodite structure to improve interface stability and electrochemical performance in Lithium solid-state batteries
    Subramanian, Yuvaraj
    Rajagopal, Rajesh
    Ryu, Kwang-Sun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 940
  • [46] Electron Redistribution Enables Redox-Resistible Li6PS5Cl towards High-Performance All-Solid-State Lithium Batteries
    Liu, Chong
    Chen, Butian
    Zhang, Tianran
    Zhang, Jicheng
    Wang, Ruoyu
    Zheng, Jian
    Mao, Qianjiang
    Liu, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (22)
  • [47] Reactivity of Li14P6S22 as a Potential Solid Electrolyte for All-Solid-State Lithium-Ion Batteries
    Doh, Chil-Hoon
    Ha, Yoon-Cheol
    Lee, You-Jin
    Yu, Ji-Hyun
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2018, 39 (10) : 1149 - 1159
  • [48] Effect of current density on the solid electrolyte interphase formation at the lithium divide Li6PS5Cl interface
    Narayanan, Sudarshan
    Ulissi, Ulderico
    Gibson, Joshua S.
    Chart, Yvonne A.
    Weatherup, Robert S.
    Pasta, Mauro
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [49] Borohydride Substitution Effects of Li6PS5Cl Solid Electrolyte
    Wang, Heng
    Gao, Ling
    Lu, Zhaoxin
    Tang, Ya
    Ye, Daixin
    Zhao, Guowei
    Zhao, Hongbin
    Zhang, Jiujun
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12079 - 12083
  • [50] Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries
    Lua, Fei
    Li, Gaoran
    Yu, Yang
    Gao, Xinpei
    Zheng, Liqiang
    Chen, Zhongwei
    CHEMICAL ENGINEERING JOURNAL, 2020, 384